matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Eigenwertechar. Polynom/invariante UR
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Eigenwerte" - char. Polynom/invariante UR
char. Polynom/invariante UR < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

char. Polynom/invariante UR: Verständnis
Status: (Frage) überfällig Status 
Datum: 14:49 Mi 06.10.2010
Autor: ilfairy

Aufgabe
[mm]F \in End(V)[/mm]
Wie sieht die Beziehung zwischen dem charakteristischen Polynom und invarianten Unterräumen aus?

Im Fischer (14. Auflage, S. 242, Kapitel 4.4) wird von der Beziehung zwischen char. Pol. und invarianten Unterräumen gesprochen. Ich bin mir nicht sicher, ob ich diese wirklich verstanden habe.
Mein Vorschlag:


eine Richtung:
char. Pol. zerfällt in Linearfaktoren, [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschiedene Eigenwerte und algebraische und geometrische Vielfachheit sind gleich, dann kann man V in F-invariante Unterräume zerlegen. Kurz:
[mm]P_{F}(t) = (\lambda_{1}-t) * (\lambda_{2}-t) * .. * (\lambda_{k}-t)[/mm]
[mm]\mu(P_{F}, \lambda) = dim(Eig(F, \lambda))[/mm]
und [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschieden
[mm]\Rightarrow [/mm]
[mm]V = Eig(F,\lambda_{1}) \oplus .. \oplus Eig(F, \lambda_{k})[/mm] mit [mm]Eig(F, \lambda_{i}) [/mm] F-invariant [mm]\forall i=1,..,k[/mm]


Aber was ist mit der anderen Richtung? Was ist, wenn ich meinen Vektorraum V in F-invariante Unterräume zerlegen kann?
Ich weiß, dass [mm]P_{U}(t)[/mm] ein Teiler von [mm]P_{F}(t)[/mm] ist (also, dass das char. Pol. von F eingeschränkt auf den invarianten Unterraum U ein Teiler vom char. Pol. von F ist)
Aber ist das alles?
Ich habe auch noch ein paar Fragen zum nachfolgenden Thema Fahnen und bin am Überlegen, ob ich mehr verstehe, wenn ich diese Fragen erstmal kläre. Was denkt ihr dazu?

Vielen Dank für eure Hilfe!



Ich habe diese Frage in keinem anderen Forum im Internet gestellt.

        
Bezug
char. Polynom/invariante UR: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mo 11.10.2010
Autor: felixf

Moin!

> [mm]F \in End(V)[/mm]
>  Wie sieht die Beziehung zwischen dem
> charakteristischen Polynom und invarianten Unterräumen
> aus?
>  Im Fischer (14. Auflage, S. 242, Kapitel 4.4) wird von der
> Beziehung zwischen char. Pol. und invarianten Unterräumen
> gesprochen. Ich bin mir nicht sicher, ob ich diese wirklich
> verstanden habe.

Ich hab den Fischer leider nicht zur Hand und kann deswegen nicht nachschauen, was da steht.

Man kann aber etwas ganz allgemein beweisen. Dazu erstmal eine Definition. Sei $A [mm] \in K^{n \times n}$ [/mm] eine fest gewaehlte Matrix.

a) Eine universelle $A$-Zerlegung ist eine Zerlegung [mm] $\bigoplus_{i=1}^k U_i [/mm] = [mm] K^n$ [/mm] mit $A$-invarianten UVRen [mm] $U_1, \dots, U_k$ [/mm] von [mm] $K^n$, [/mm] so dass gilt: ist $U$ irgendein $A$-invarianter UVR, so ist $U = [mm] \bigoplus_{i=1}^k (U_i \cap [/mm] U)$.

Sei die Menge dieser Zerlegungen gleich [mm] $\mathcal{Z}$. [/mm]

(Beachte, dass die Inklusion [mm] "$\supseteq$" [/mm] immer glit. Die Rueckrichtung ist die wichtige Aussage!)

b) Eine teilerfremde Zerlegung des char. Polynoms [mm] $\xi_A$ [/mm] von $A$ ist ein Produkt [mm] $\xi_A [/mm] = [mm] \prod_{i=1}^k f_i$, [/mm] wobei [mm] $f_1, \dots, f_k \in [/mm] K[t]$ paarweise teilerfremd und normiert sind.

Sei die Menge dieser Zerlegungen gleich [mm] $\mathcal{F}$. [/mm]

(Ich gehe hier davon aus, dass char. Polynome immer normiert sind.)

Dann sollte man folgendes Beweisen koennen:

Es gibt eine Bijektion zwischen der Menge der universellen $A$-Zerlegungen, [mm] $\mathcal{Z}$, [/mm] und der Menge der teilerfremden Zerlegungen des char. Polynoms, [mm] $\mathcal{F}$, [/mm] die gegeben ist durch [mm] $(U_1, \dots, U_k) \mapsto (\xi_{A|_{U_1}}, \dots, \xi_{A|_{U_k}})$. [/mm]

(Hier ist [mm] $\xi_{A|_U}$ [/mm] das char. Polynom des Endomorphismus $U [mm] \to [/mm] U$, der durch den durch $A$ beschriebenen Endomorphismus [mm] $K^n \to K^n$ [/mm] induziert wird. Dies geht, da $U$ $A$-invariant ist.)


Die feinste universelle $A$-Zerlegung korrespondiert also zur Zerlegung von [mm] $\xi_A$ [/mm] in Primpolynom-Potenzen.

Nimmt man an, dass [mm] $\xi_A$ [/mm] in Linearfaktoren zerfaellt, etwa [mm] $\xi_A [/mm] = [mm] \prod_{i=1}^k [/mm] (t - [mm] \lambda_i)^{e_i}$ [/mm] mit [mm] $e_i \in \IN$ [/mm] und [mm] $\lambda_1, \dots, \lambda_k$ [/mm] paarweise verschieden, so ist eine solche Zerlegung gerade $((t - [mm] \lambda_1)^{e_1}, \dots, [/mm] (t - [mm] \lambda_k)^{e_k})$. [/mm]


Es gibt oft feinere Zerlegungen von [mm] $K^n$ [/mm] in $A$-invariante Untervektorraeume (siehe z.B. die Jordansche Normalform: jedes Jordan-Kaestchen entspricht einem $A$-invarianten UVR), diese sind jedoch nicht mehr "universell" im obigen Sinne.


>  Mein Vorschlag:
>  
>
> eine Richtung:
>  char. Pol. zerfällt in Linearfaktoren, [mm]\lambda_{1}, .. , \lambda_{k}[/mm]
> paarweise verschiedene Eigenwerte und algebraische und
> geometrische Vielfachheit sind gleich, dann kann man V in
> F-invariante Unterräume zerlegen. Kurz:
>  [mm]P_{F}(t) = (\lambda_{1}-t) * (\lambda_{2}-t) * .. * (\lambda_{k}-t)[/mm]
>  
> [mm]\mu(P_{F}, \lambda) = dim(Eig(F, \lambda))[/mm]
>  und
> [mm]\lambda_{1}, .. , \lambda_{k}[/mm] paarweise verschieden
>  [mm]\Rightarrow[/mm]
>  [mm]V = Eig(F,\lambda_{1}) \oplus .. \oplus Eig(F, \lambda_{k})[/mm]
> mit [mm]Eig(F, \lambda_{i})[/mm] F-invariant [mm]\forall i=1,..,k[/mm]
>  
>
> Aber was ist mit der anderen Richtung? Was ist, wenn ich
> meinen Vektorraum V in F-invariante Unterräume zerlegen
> kann?

Dann gibt es i.A. weder Linearfakoren des char. Polynoms, doch ist die Matrix diagonalisierbar.

>  Ich weiß, dass [mm]P_{U}(t)[/mm] ein Teiler von [mm]P_{F}(t)[/mm] ist
> (also, dass das char. Pol. von F eingeschränkt auf den
> invarianten Unterraum U ein Teiler vom char. Pol. von F
> ist)
>  Aber ist das alles?

Ich hoffe das, was ich oben geschrieben hab, bringt dich etwas weiter und verwirrt dich nicht zu sehr ;-)

LG Felix


Bezug
                
Bezug
char. Polynom/invariante UR: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Mo 18.10.2010
Autor: ilfairy

Uhh! Ein wenig verwirrt bin ich schon - hab aber eine Ahnung um was es hier geht.

Allerdings habe ich noch zwei Fragen zu a) und b):
Ich verstehe die Definition einer universellen Zerlegung nicht. Wie kann denn so eine Zerlegung aussehen?
Die Inklusion in eine Richtung ist mir klar – allerding nicht in die andre Richtung (also warum U immer Teilmenge der direkten Summe ist).

Und warum gehst du davon aus, dass das charakteristische Polynom immer normiert ist?

Liebe Grüße und vielen Dank!

Bezug
                        
Bezug
char. Polynom/invariante UR: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 25.10.2010
Autor: felixf

Moin!

> Uhh! Ein wenig verwirrt bin ich schon - hab aber eine
> Ahnung um was es hier geht.

Gut :)

> Allerdings habe ich noch zwei Fragen zu a) und b):
>  Ich verstehe die Definition einer universellen Zerlegung
> nicht. Wie kann denn so eine Zerlegung aussehen?

Nun, ist die lineare Abb. etwa ueber eine Matrix wie [mm] $\pmat{ \lambda & 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & 1 \\ 0 & \cdots & \cdots & 0 & \lambda }$, [/mm] dann ist die Zerlegung [mm] $K^n$ [/mm] selber (also genau ein einziger invarianter UVR).

Die Zerlegung ist einfach die Hauptraumzerlegung, auch Jordanzerlegung genannt.

>  Die Inklusion in eine Richtung ist mir klar – allerding
> nicht in die andre Richtung (also warum U immer Teilmenge
> der direkten Summe ist).

Nun, das muss man ja gerade zeigen, damit es eine universelle Zerlegung ist.

Oder verstehe ich deine Frage falsch? Meinst du wie man das im konkreten Fall zeigen kann?

> Und warum gehst du davon aus, dass das charakteristische
> Polynom immer normiert ist?

Weil ich's schoener finde :)

LG Felix


Bezug
        
Bezug
char. Polynom/invariante UR: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 22.10.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]