matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihengleichheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihengleichheit
Reihengleichheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihengleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Di 14.03.2006
Autor: AriR

hey leute,
kann mir bitte einer von euch sagen, ob folgende Gleichheit gilt:

-4+ [mm] \summe_{k=0}^{\infty}(\bruch1{3}^{k-1})= \summe_{k=2}^{\infty}\bruch1{3}^{k-1}=-1+\summe_{k=0}^{\infty}\bruch1{3}^k [/mm]

wäre nett von euch ;) Gruß Ari

        
Bezug
Reihengleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Di 14.03.2006
Autor: mathiash

Hallo Ari und einen guten Tag,

kann es sein, dass Du in der Aufgabenstellung  

[mm] \sum_{k=0}^{\infty} \left (\frac{1}{3}\right )^k [/mm]

meinst !

Mal angenommen, dass dem so ist, dann hätten wir doch


[mm] \sum_{k=0}^N\frac{1}{3^k}= \frac{1- 1\slash 3^{N+1}}{1-1\slash 3}= \frac{3}{2}\cdot (1-1\slash 3^{N+1}) [/mm]

und das konvergiert gegen [mm] \frac{3}{2}. [/mm]

Weiterhin ergibt sich daraus

[mm] -4+\sum_{k=0}^{\infty}3^{-(k-1)}\:\: =\:\: [/mm] -4 [mm] +3\cdot \sum_{k=0}^{\infty}3^{-k}=-4+3\cdot \frac{3}{2} [/mm]

[mm] \sum_{k=2}^{\infty}3^{-(k-1)}\:\: =\:\: \frac{3}{2}-1-\frac{1}{3} [/mm]

[mm] -1+\sum_{k=0}^{\infty}3^{-k}=-1+\frac{3}{2} [/mm]

Hoffe, ich hab mich nicht verrechnet, damit solltest Du dann klar kommen.

Gruss,

Mathias



Bezug
                
Bezug
Reihengleichheit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:01 Di 14.03.2006
Autor: AriR

hi mathiash.. ehrlich gesagt muss ich deine frage leider mit nein beantworten.

ich weiß auch ehrlichgesagt gar nciht so genau was du da gemachast hast.. meine frage war eigentlich, ob diese 3summen gleich sind.

ich würde sagen die ersten beiden sind gleich, weil die erste summe sozusagen genau die 2 summe ist, nur das 2 summanden hinzugekommen sind, die ich dann durch die -4 wieder abgezogen habe oder?

Bezug
                        
Bezug
Reihengleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Di 14.03.2006
Autor: kretschmer

Hallo,

also wenn Du ehrlich
[mm] $\sum_{k=0}^{\infty}\frac{1^{k-1}}{3}$ [/mm]
hast, dann sind die drei Summen nicht gleich. [mm] $1^i=1$ $\Rightarrow$ [/mm]
[mm] $\sum_{k=0}^\infty\frac{1}{3}=\sum_{k=n}^\infty\frac{1}{3}$ [/mm]
damit ein Widerspruch.

Bist Du Dir sicher, dass Du Dich nicht vertippt hast? Ansonsten ist vielleicht ein Fehler in der Aufgabenstellung.

Und in diesem Fall hat Mathiash demonstriert, warum diese Summen dann mit der Korrektur identisch sind.

--
Gruss
Matthias

Bezug
                                
Bezug
Reihengleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:16 Di 14.03.2006
Autor: AriR

asoo ich meinte das dann genau genommen so [mm] (\bruch1{3})^k-1 [/mm] also die exponenten beziehen sich immer auf den ganzen bruch, in alle fällen.

sorry.. ist mir gar nicht aufgefallen

Bezug
                        
Bezug
Reihengleichheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 Do 16.03.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Reihengleichheit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 Di 14.03.2006
Autor: AriR

hier ist das jetzt nochmal genau aufgeschrieben:

[mm] -4+\summe_{k=0}^{\infty}(\bruch1{3})^{k-1}= \summe_{k=2}^{\infty}(\bruch1{3})^{k-1}=-1+\summe_{k=0}^{\infty}(\bruch1{3})^k [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]