matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeMehrdimensionale Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "" - Mehrdimensionale Extrema
Mehrdimensionale Extrema < < Differentiation < Calculus < Grades 11-12 < School < Maths <
View: [ threaded ] | ^ Forum "Extremwertprobleme"  | ^^ all forums  | ^ Tree of Forums  | materials

Mehrdimensionale Extrema: Rückfrage, Idee,Tipp, Hilfe
Status: (Question) answered Status 
Date: 14:46 Do 15/02/2018
Author: Dom_89

Hallo,

ich habe ein kleines Verständnisproblem bei der Bestimmung von mehrdimensionalen Extrema.

Die erste und auch zweite Ableitung nur nach "x" bzw. nur nach "y" ist soweit kein Problem. Jedoch wird innerhalb der Rechnung ja dann auch die "zweite" Ableitung erst nach x und dann nach y gefordert und auch umgekehrt.

Beispiel:

f(x,y) = [mm] \bruch{1}{3}x^{3}-x^{2}+y^{3}-12y [/mm]

hier ist ja dann:

fx(x,y) = [mm] x^{2}-2x [/mm]
fy(x,y) = [mm] 3y^{2}-12 [/mm]

fxx(x,y) = 2x-2
fyy(x,y) = 6y

Nun ist hier ja fyx(x,y) = fxy(x,y) = 0 (Was ich leider bis jetzt nicht nachvollziehen kann)

Mein Gedankengang bisher führt mich auf:

fx(x,y) = [mm] x^{2}-2x [/mm]

fyx(x,y) = 2x-2

Zuerst soll ich ja nach y ableiten, was hier ja nicht mehr geht; anschließend nach x, was mich dann auf obiges Ergebnis führt.

Wo ist der Gedankenfehler von mir ? :(

Vielen Dank!

        
Bezug
Mehrdimensionale Extrema: Antwort
Status: (Answer) finished Status 
Date: 14:55 Do 15/02/2018
Author: Gonozal_IX

Hiho,

> Hallo,
>  
> ich habe ein kleines Verständnisproblem bei der Bestimmung
> von mehrdimensionalen Extrema.
>  
> Die erste und auch zweite Ableitung nur nach "x" bzw. nur
> nach "y" ist soweit kein Problem. Jedoch wird innerhalb der
> Rechnung ja dann auch die "zweite" Ableitung erst nach x
> und dann nach y gefordert und auch umgekehrt.
>  
> Beispiel:
>  
> f(x,y) = [mm]\bruch{1}{3}x^{3}-x^{2}+y^{3}-12y[/mm]
>  
> hier ist ja dann:
>  
> fx(x,y) = [mm]x^{2}-2x[/mm]
>  fy(x,y) = [mm]3y^{2}-12[/mm]
>  
> fxx(x,y) = 2x-2
>  fyy(x,y) = 6y

Bis hierhin stimmt alles.

> Nun ist hier ja fyx(x,y) = fxy(x,y) = 0

Korrekt.

Im Übrigen macht man einen Index mit _
Wenn du mehrere Zeichen als Index setzen willst, kommt das in Geschweifte Klammer: f_x gibt dir also [mm] $f_x$ [/mm] und f_{xy} gibt dir [mm] $f_{xy}$ [/mm]


> Mein Gedankengang bisher führt mich auf:
>  
> fx(x,y) = [mm]x^{2}-2x[/mm]

[ok]

>
> fyx(x,y) = 2x-2

[notok]
Du hast hier wieder zweimal nach x abgeleitet.

> Zuerst soll ich ja nach y ableiten, was hier ja nicht mehr
> geht; anschließend nach x, was mich dann auf obiges
> Ergebnis führt.

Nein… nehmen wir also mal
[mm] $f_x(x,y) [/mm] = [mm] x^{2}-2x$ [/mm]
Wie du bereits richtig erkannt hast, enthält das kein $y$ mehr.
D.h. wenn wir das nach $y$ ableiten, ist alles was da steht in Bezug auf y konstant und die Ableitung von Konstanten ist 0.

D.h. es gilt:
[mm] $f_{xy}(x,y) [/mm] = 0$

Gewöhn dir einfach an:
Terme, die kein y enthalten, sind bei der Ableitung nach y Konstanten.
Analog für x.

Da auch die erste Ableitung nach $y$ keine x mehr aufweist, ist eben die Ableitung von [mm] $f_y$ [/mm] nach x ebenfalls 0.

Kleiner Fingerübung:
Was sind die partiellen Ableitungen von $f(x,y) = xy$ bis zur Ordnung 2?

Gruß,
Gono


Bezug
View: [ threaded ] | ^ Forum "Extremwertprobleme"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 6h 49m 2. Fulla
S8-10/Bruchgleichung lösen
Status vor 7h 34m 4. leduart
DiffGlGew/Anfangswertaufgabe lösen
Status vor 14h 02m 5. matux MR Agent
DiffGlGew/Anfangswertaufgabe lösen
Status vor 14h 25m 5. mathelernender
ZahlTheo/Dedekindsche Psi-Funktion
Status vor 17h 23m 2. Diophant
ZahlTheo/chin. Restsatz
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]