matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraalgebraische Körpererw. / Grad
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - algebraische Körpererw. / Grad
algebraische Körpererw. / Grad < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

algebraische Körpererw. / Grad: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:25 So 07.12.2014
Autor: EvelynSnowley2311

Aufgabe
1) a)  Berechnen Sie den Grad von [mm] [\IQ(\wurzel[p]{d} [/mm] : [mm] \IQ] [/mm] und [mm] [\IQ(\zeta_p) [/mm] : [mm] \IQ [/mm] ] , wobei [mm] \zeta_p [/mm] := [mm] e^{\bruch{2\pi i}{p}} [/mm]

b) Zeigen Sie, dass [mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm] : [mm] \IQ [/mm] ] = (p-1) * p

c) Wird f(x) in [mm] \IQ(\zeta_p, \wurzel[p]{d}) [/mm] in lineare Faktoren faktorisiert?


Huhu zusammen!

Also bisher hab ich folgendes:

zu a)  Der Grad von beiden ist p , da das Polynom [mm] x^p [/mm] -1 / [mm] x^p [/mm] -d von eine Nullstelle ist. Das Polynom ist Minimalpolynom, da wir schon mithilfe des Eisensteinschen kriteriums dies nachgewiesen haben.

b) Es gilt mit Gradformel:


[mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm] : [mm] \IQ [/mm] ] = [mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm] : [mm] \IQ(\zeta_p)] [/mm] * [mm] [\IQ(\zeta_p) [/mm] : [mm] \IQ] [/mm]

und


[mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm] : [mm] \IQ] [/mm] =  [mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm]  : [mm] \IQ(\wurzel[p]{d}] [/mm] * [mm] [\IQ(\wurzel[p]{d} [/mm] : [mm] \IQ] [/mm]

Nun bleibt zu zeigen, dass  [mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm] : [mm] \IQ(\zeta_p)] [/mm]  =  [mm] [\IQ(\zeta_p, \wurzel[p]{d}) [/mm]  : [mm] \IQ(\wurzel[p]{d}] [/mm] = (p-1), dies ist mir nicht ganz klar, warum das so ist. Ich weiß dass der grad der beiden auf jeden Fall [mm] \le [/mm] p ist, aber warum genau p-1 weiß ich nicht :/


c) Ich denke ja, es ist  f(x) = [mm] x^p [/mm] -1 = [mm] (x-1)*(x^{p-1} [/mm] + [mm] x^{p-1} [/mm] + [mm] \dots [/mm] + 1)

= (x-1) [mm] *[x^{p-1} [/mm] -1 [mm] +x^{p-2}+...+2] [/mm]

= (x-1) [mm] *[(x-1)(x^{p-2}+...+1) [/mm] + [mm] x^{p-2} [/mm] +...+2] und ich denke das kann ich noch weiterführen, dauert nur etwas^^

        
Bezug
algebraische Körpererw. / Grad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 So 07.12.2014
Autor: hippias


> 1) a)  Berechnen Sie den Grad von [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]
> und [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ[/mm] ] , wobei [mm]\zeta_p[/mm] := [mm]e^{\bruch{2\pi i}{p}}[/mm]
>  
> b) Zeigen Sie, dass [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] =
> (p-1) * p
>  
> c) Wird f(x) in [mm]\IQ(\zeta_p, \wurzel[p]{d})[/mm] in lineare
> Faktoren faktorisiert?
>  
> Huhu zusammen!
>  
> Also bisher hab ich folgendes:
>  
> zu a)  Der Grad von beiden ist p , da das Polynom [mm]x^p[/mm] -1 /
> [mm]x^p[/mm] -d von eine Nullstelle ist. Das Polynom ist
> Minimalpolynom, da wir schon mithilfe des Eisensteinschen
> kriteriums dies nachgewiesen haben.

Das kann ich beim besten Willen nicht verstehen. Druecke Dich doch klarer aus.

>  
> b) Es gilt mit Gradformel:
>  
>
> [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] = [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
> : [mm]\IQ(\zeta_p)][/mm] * [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ][/mm]
>  
> und
>
>
> [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ][/mm] =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
>  : [mm]\IQ(\wurzel[p]{d}][/mm] * [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]
>  
> Nun bleibt zu zeigen, dass  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] :
> [mm]\IQ(\zeta_p)][/mm]  =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]  :
> [mm]\IQ(\wurzel[p]{d}][/mm] = (p-1), dies ist mir nicht ganz klar,
> warum das so ist. Ich weiß dass der grad der beiden auf
> jeden Fall [mm]\le[/mm] p ist, aber warum genau p-1 weiß ich nicht
> :/

Welche der obigen Grade sind Dir denn bekannt? Und warum?

>  
>
> c) Ich denke ja, es ist  f(x) = [mm]x^p[/mm] -1 = [mm](x-1)*(x^{p-1}[/mm] +
> [mm]x^{p-1}[/mm] + [mm]\dots[/mm] + 1)
>
> = (x-1) [mm]*[x^{p-1}[/mm] -1 [mm]+x^{p-2}+...+2][/mm]
>  
> = (x-1) [mm]*[(x-1)(x^{p-2}+...+1)[/mm] + [mm]x^{p-2}[/mm] +...+2] und ich
> denke das kann ich noch weiterführen, dauert nur etwas^^

Und? Was ist denn $f$ ueberhaupt?

Bezug
                
Bezug
algebraische Körpererw. / Grad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 So 07.12.2014
Autor: EvelynSnowley2311


> > 1) a)  Berechnen Sie den Grad von [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]
> > und [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ[/mm] ] , wobei [mm]\zeta_p[/mm] := [mm]e^{\bruch{2\pi i}{p}}[/mm]
>  
> >  

> > b) Zeigen Sie, dass [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] =
> > (p-1) * p
>  >  
> > c) Wird f(x) in [mm]\IQ(\zeta_p, \wurzel[p]{d})[/mm] in lineare
> > Faktoren faktorisiert?
>  >  
> > Huhu zusammen!
>  >  
> > Also bisher hab ich folgendes:
>  >  
> > zu a)  Der Grad von beiden ist p , da das Polynom [mm]x^p[/mm] -1 /
> > [mm]x^p[/mm] -d von eine Nullstelle ist. Das Polynom ist
> > Minimalpolynom, da wir schon mithilfe des Eisensteinschen
> > kriteriums dies nachgewiesen haben.
>  Das kann ich beim besten Willen nicht verstehen. Druecke
> Dich doch klarer aus.

Sry also wir wissen bereits, dass  

[ [mm] \IQ(\wurzel[p]{d}) [/mm] : [mm] \IQ] [/mm] = [ [mm] \IQ(\zeta_p) [/mm] : [mm] \IQ] [/mm] = p

Das steht da mehr oder weniger


> > b) Es gilt mit Gradformel:
>  >  
> >
> > [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] = [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
> > : [mm]\IQ(\zeta_p)][/mm] * [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ][/mm]
>  >  
> > und
> >
> >
> > [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ][/mm] =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
> >  : [mm]\IQ(\wurzel[p]{d}][/mm] * [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]

>  >  
> > Nun bleibt zu zeigen, dass  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] :
> > [mm]\IQ(\zeta_p)][/mm]  =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]  :
> > [mm]\IQ(\wurzel[p]{d}][/mm] = (p-1), dies ist mir nicht ganz klar,
> > warum das so ist. Ich weiß dass der grad der beiden auf
> > jeden Fall [mm]\le[/mm] p ist, aber warum genau p-1 weiß ich nicht
> > :/
>  Welche der obigen Grade sind Dir denn bekannt? Und warum?

Siehe oben^^

> >
> > c) Ich denke ja, es ist  f(x) = [mm]x^p[/mm] -1 = [mm](x-1)*(x^{p-1}[/mm] +
> > [mm]x^{p-1}[/mm] + [mm]\dots[/mm] + 1)
> >
> > = (x-1) [mm]*[x^{p-1}[/mm] -1 [mm]+x^{p-2}+...+2][/mm]
>  >  
> > = (x-1) [mm]*[(x-1)(x^{p-2}+...+1)[/mm] + [mm]x^{p-2}[/mm] +...+2] und ich
> > denke das kann ich noch weiterführen, dauert nur etwas^^
> Und? Was ist denn [mm]f[/mm] ueberhaupt?


Mein Minimalpolynom f ist in dem Fall [mm] x^p [/mm] -1 bzw [mm] x^p [/mm] -d. Ich denke ich muss es hier ja nur bis in lineare Terme faktorisieren

Bezug
                        
Bezug
algebraische Körpererw. / Grad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 So 07.12.2014
Autor: hippias


> > > 1) a)  Berechnen Sie den Grad von [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]
> > > und [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ[/mm] ] , wobei [mm]\zeta_p[/mm] := [mm]e^{\bruch{2\pi i}{p}}[/mm]
>  
> >  

> > >  

> > > b) Zeigen Sie, dass [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] =
> > > (p-1) * p
>  >  >  
> > > c) Wird f(x) in [mm]\IQ(\zeta_p, \wurzel[p]{d})[/mm] in lineare
> > > Faktoren faktorisiert?
>  >  >  
> > > Huhu zusammen!
>  >  >  
> > > Also bisher hab ich folgendes:
>  >  >  
> > > zu a)  Der Grad von beiden ist p , da das Polynom [mm]x^p[/mm] -1 /
> > > [mm]x^p[/mm] -d von eine Nullstelle ist. Das Polynom ist
> > > Minimalpolynom, da wir schon mithilfe des Eisensteinschen
> > > kriteriums dies nachgewiesen haben.
>  >  Das kann ich beim besten Willen nicht verstehen.
> Druecke
> > Dich doch klarer aus.
>  
> Sry also wir wissen bereits, dass  
>
> [ [mm]\IQ(\wurzel[p]{d})[/mm] : [mm]\IQ][/mm] = [ [mm]\IQ(\zeta_p)[/mm] : [mm]\IQ][/mm] = p
>  
> Das steht da mehr oder weniger

Aha. Dann will ich mal mitspielen: Das ist mehr oder weniger falsch.

>  
>
> > > b) Es gilt mit Gradformel:
>  >  >  
> > >
> > > [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ[/mm] ] = [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
> > > : [mm]\IQ(\zeta_p)][/mm] * [mm][\IQ(\zeta_p)[/mm] : [mm]\IQ][/mm]
>  >  >  
> > > und
> > >
> > >
> > > [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] : [mm]\IQ][/mm] =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]
> > >  : [mm]\IQ(\wurzel[p]{d}][/mm] * [mm][\IQ(\wurzel[p]{d}[/mm] : [mm]\IQ][/mm]

>  >  >  
> > > Nun bleibt zu zeigen, dass  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm] :
> > > [mm]\IQ(\zeta_p)][/mm]  =  [mm][\IQ(\zeta_p, \wurzel[p]{d})[/mm]  :
> > > [mm]\IQ(\wurzel[p]{d}][/mm] = (p-1), dies ist mir nicht ganz klar,
> > > warum das so ist. Ich weiß dass der grad der beiden auf
> > > jeden Fall [mm]\le[/mm] p ist, aber warum genau p-1 weiß ich nicht
> > > :/
>  >  Welche der obigen Grade sind Dir denn bekannt? Und
> warum?
>  
> Siehe oben^^

Dito.

>  
> > >
> > > c) Ich denke ja, es ist  f(x) = [mm]x^p[/mm] -1 = [mm](x-1)*(x^{p-1}[/mm] +
> > > [mm]x^{p-1}[/mm] + [mm]\dots[/mm] + 1)
> > >
> > > = (x-1) [mm]*[x^{p-1}[/mm] -1 [mm]+x^{p-2}+...+2][/mm]
>  >  >  
> > > = (x-1) [mm]*[(x-1)(x^{p-2}+...+1)[/mm] + [mm]x^{p-2}[/mm] +...+2] und ich
> > > denke das kann ich noch weiterführen, dauert nur etwas^^
> > Und? Was ist denn [mm]f[/mm] ueberhaupt?
>
>
> Mein Minimalpolynom f ist in dem Fall [mm]x^p[/mm] -1 bzw [mm]x^p[/mm] -d.
> Ich denke ich muss es hier ja nur bis in lineare Terme
> faktorisieren

Das ist mehr oder weniger falsch. Dass mit $f$ ueberhaupt irgendein Minimalpolynom gemeint sein, geht aus Deinem Text doch ueberhaupt nicht hervor.

Bezug
                                
Bezug
algebraische Körpererw. / Grad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:58 So 07.12.2014
Autor: EvelynSnowley2311

Sry !

Zur a) korrigier ich mich und sage , dass [ [mm] \IQ(\zeta_p) [/mm] : [mm] \IQ [/mm] ] = p-1

Bezug
        
Bezug
algebraische Körpererw. / Grad: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 09.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]