matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstige TransformationenSigma-algebra:aAbgesch. Mengen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstige Transformationen" - Sigma-algebra:aAbgesch. Mengen
Sigma-algebra:aAbgesch. Mengen < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-algebra:aAbgesch. Mengen: Ist die Lösung richtig?
Status: (Frage) beantwortet Status 
Datum: 10:54 Do 02.02.2017
Autor: tobi91_nds

Aufgabe
Zeige, dass [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] die kleinste [mm] $\sigma$-Algebra [/mm] ist, die alle offenen Teilmengen von [mm] $\mathbb{R}$ [/mm] enthält.


Meine Argumentation erscheint mir so verdächtig einfach. Deswegen wollte ich mal fragen, ob das so geht.

[mm] $\left(1\right)$ [/mm] Nach definition ist [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] die kleinste [mm] $\sigma$-Algebra, [/mm] die alle offenen Mengen von [mm] $\mathbb{R}$ [/mm] enthält. Weil [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] eine [mm] $\sigma$-Algebra [/mm] ist, enthält sie auch die komplemente, also auch die abgeschlossenen Mengen. D.h. [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] ist eine [mm] $\sigma$-Algebra, [/mm] die alle abgeschlossenen Mengen enhält.

[mm] $\left(2\right)$ [/mm] Sei [mm] $\mathcal{A}\subset\mathcal{P}\left(\mathbb{R}\right)$ [/mm] eine [mm] $\sigma$-Algebra, [/mm] die alle abgeschlossenen Mengen enthält. Sei [mm] $O\subset\mathbb{R}$ [/mm] eine offene Menge [mm] $\Rightarrow$ $O^c$ [/mm] ist abgeschlossen [mm] $\Rightarrow$ $O^c\in\mathcal{A}$ [/mm] und [mm] $O^c,O\in\mathcal{A}$ $\Rightarrow$ $\mathcal{A}$ [/mm] enthält alle offenen Mengen [mm] $\Rightarrow$ $\mathcal{B}\left(\mathbb{R}\right)\subset\mathcal{A}$. [/mm] Also ist [mm] $\mathcal{B}\left(\mathbb{R}\right)$ [/mm] die kleinste [mm] $\sigma$-Algebra, [/mm] die alle abgeschlossenen Mengen enthält.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Sigma-algebra:aAbgesch. Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Do 02.02.2017
Autor: fred97


> Zeige, dass [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] die kleinste
> [mm]\sigma[/mm]-Algebra ist, die alle offenen Teilmengen von
> [mm]\mathbb{R}[/mm] enthält.
>  

Wenn ich Deine Argumentation unten lese, kommt mir der Verdacht, dass zu zeigen ist (vermutlich hast Du Dich verschrieben):

Zeige, dass [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] die kleinste
[mm]\sigma[/mm]-Algebra ist, die alle abgeschlossenen Teilmengen von
[mm]\mathbb{R}[/mm] enthält.

Wenn mein Verdacht richtig ist, so hast Du unten einen korrekten Beweis abgeliefert.


>  
> Meine Argumentation erscheint mir so verdächtig einfach.
> Deswegen wollte ich mal fragen, ob das so geht.
>  
> [mm]\left(1\right)[/mm] Nach definition ist
> [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] die kleinste
> [mm]\sigma[/mm]-Algebra, die alle offenen Mengen von [mm]\mathbb{R}[/mm]
> enthält. Weil [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] eine
> [mm]\sigma[/mm]-Algebra ist, enthält sie auch die komplemente, also
> auch die abgeschlossenen Mengen. D.h.
> [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] ist eine [mm]\sigma[/mm]-Algebra,
> die alle abgeschlossenen Mengen enhält.
>  
> [mm]\left(2\right)[/mm] Sei
> [mm]\mathcal{A}\subset\mathcal{P}\left(\mathbb{R}\right)[/mm] eine
> [mm]\sigma[/mm]-Algebra, die alle abgeschlossenen Mengen enthält.
> Sei [mm]O\subset\mathbb{R}[/mm] eine offene Menge [mm]\Rightarrow[/mm] [mm]O^c[/mm]
> ist abgeschlossen [mm]\Rightarrow[/mm] [mm]O^c\in\mathcal{A}[/mm] und
> [mm]O^c,O\in\mathcal{A}[/mm] [mm]\Rightarrow[/mm] [mm]\mathcal{A}[/mm] enthält alle
> offenen Mengen [mm]\Rightarrow[/mm]
> [mm]\mathcal{B}\left(\mathbb{R}\right)\subset\mathcal{A}[/mm]. Also
> ist [mm]\mathcal{B}\left(\mathbb{R}\right)[/mm] die kleinste
> [mm]\sigma[/mm]-Algebra, die alle abgeschlossenen Mengen enthält.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
                
Bezug
Sigma-algebra:aAbgesch. Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Do 02.02.2017
Autor: tobi91_nds

Der Verdacht war richtig. Habe mich vertippt. Sorry. :D


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 2h 02m 2. matux MR Agent
GraphTheo/Modularität eines Graphen best
Status vor 13h 41m 1. questionpeter
UAlgGRK/Epimorphismus
Status vor 14h 0m 1. mimo1
Algebra/Ideale/Lokalisierung
Status vor 17h 54m 2. leduart
DiffGlGew/DGL erster ORdnung mit Betrag
Status vor 18h 37m 12. Al-Chwarizmi
IntTheo/Treppenfunktionen
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]