matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichen(Richtungs-)Ableitung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - (Richtungs-)Ableitung
(Richtungs-)Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Richtungs-)Ableitung: Ableiten von f(x1,x2)
Status: (Frage) beantwortet Status 
Datum: 22:32 Fr 10.10.2014
Autor: Olli1968

Aufgabe 1
Es seien [mm]f:\IR^2\to\IR [/mm] und [mm] \vec h:\IR\to\IR^2 [/mm] definiert durch [mm] f(x_1,x_2)=e^{x_1} \cdot sin (x_2) [/mm], [mm] \vec x={x_1 \choose x_2}= \vec h(t)={h_1(t) \choose h_2(t)}={t^3 \choose 1+t^2} [/mm], also [mm] f\circ \vec h(t)=e^{t^3}*sin(1+t^2) [/mm].
Differenziere diese Funktion auf zwei Weisen: einmal direkt und einmal mit (6.33).

(6.33) [mm] \bruch{d \vec y}{dt}=\sum_{k=1}^{N} \bruch{\partial \vec y}{\partial x_k} \bruch{dx_k}{dt} [/mm]

Aufgabe 2
Bestimme die Richtungsableitung [mm] \bruch{\partial f}{\partial \vec a}(0,0) [/mm] für [mm] \vec a=\bruch{1}{\wurzel{2}}{1 \choose 1} [/mm]

" Ich habe diese Frage in keinem anderen Forum gepostet! "

Hallo liebe Mathefreunde,

ich habe folgende Lösungsansätze gefunden

Lösung Aufgabe 1
a) direkt ableiten heißt für mich, dass ich mit der Produkt- und Kettenregel ableiten soll.
Somit erhalte ich: [mm] \bruch{dy}{dt}=\bruch{d}{dt}(e^{t^3} * sin(1+t^2))=3t^2e^{t^3} * sin(1+t^2) + e^{t^3} *2t * cos(1+t^2) [/mm]

b) In (6.33) muss also [mm] y=f(h_1(t) , h_2(t)) = e^{t^3}*sin(1+t^2) [/mm] statt [mm]\vec y[/mm] stehen - richtig?

Somit müsste ich (6.33) so umschreiben [mm] \bruch{d y(h_1(t),h_2(t))}{dt}=\sum_{k=1}^{2} \bruch{\partial y(x_1,x_2)}{\partial x_k} \bruch{d x_k}{dt} = \bruch{\partial y(x_1,x_2)}{\partial x_1}*\bruch{d x_1}{dt} + \bruch{\partial y(x_1,x_2)}{\partial x_2}*\bruch{d x_2}{dt} [/mm]
Ich habe damit nun folgendes berechnet [mm] \bruch{dy}{dt}=e^{x_1}*sin(x_2)*3t^2+e^{x_1}*cos(x_2)*2t [/mm]
und wie geht's nun weiter?

Lösung Aufgabe 2
Die Richtungsableitung in Richtung von [mm]\vec a[/mm] mit [mm]|\vec a|=1[/mm] war für [mm]f:\IR^2\to\IR [/mm] so definiert
[mm]\bruch{\partial f(\vec x_0)}{\partial \vec a}:=grad\ f(\vec x_0)*\vec a[/mm]
wobei [mm] grad\ f(\vec x_0) = \vec f '(\vec x_0) (Jacobi-Matrix) [/mm] ist.
Damit erhalte ich [mm] grad\ f(\vec x_0) ={e^0*sin(0) \choose e^0*cos(0)}={0 \choose 1}[/mm]
und erhalte damit für die Richtungsableitung  
[mm]\bruch{\partial f(0,0)}{\partial \vec a}={0 \choose 1}*{\bruch{1}{\wurzel{2}} \choose \bruch{1}{\wurzel{2}}}=0+\bruch{1}{\wurzel{2}}=\bruch{1}{\wurzel{2}} [/mm]
stimmt das so? und was sagt mir das jetzt?

Über Tipps und Rückmeldungen würde ich mich sehr freuen.

LG Olli

        
Bezug
(Richtungs-)Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:59 Sa 11.10.2014
Autor: andyv

Hallo Olli

> Es seien [mm]f:\IR^2\to\IR[/mm] und [mm]\vec h:\IR\to\IR^2[/mm] definiert
> durch [mm]f(x_1,x_2)=e^{x_1} \cdot sin (x_2) [/mm], [mm]\vec x={x_1 \choose x_2}= \vec h(t)={h_1(t) \choose h_2(t)}={t^3 \choose 1+t^2} [/mm],
> also [mm]f\circ \vec h(t)=e^{t^3}*sin(1+t^2) [/mm].
>  Differenziere
> diese Funktion auf zwei Weisen: einmal direkt und einmal
> mit (6.33).
>  
> (6.33) [mm]\bruch{d \vec y}{dt}=\sum_{k=1}^{N} \bruch{\partial \vec y}{\partial x_k} \bruch{dx_k}{dt}[/mm]
>  
> Bestimme die Richtungsableitung [mm]\bruch{\partial f}{\partial \vec a}(0,0)[/mm]
> für [mm]\vec a=\bruch{1}{\wurzel{2}}{1 \choose 1}[/mm]
>  " Ich habe
> diese Frage in keinem anderen Forum gepostet! "
>  
> Hallo liebe Mathefreunde,
>  
> ich habe folgende Lösungsansätze gefunden
>  
> Lösung Aufgabe 1
>  a) direkt ableiten heißt für mich, dass ich mit der
> Produkt- und Kettenregel ableiten soll.
>  Somit erhalte ich: [mm]\bruch{dy}{dt}=\bruch{d}{dt}(e^{t^3} * sin(1+t^2))=3t^2e^{t^3} * sin(1+t^2) + e^{t^3} *2t * cos(1+t^2)[/mm]
>  
>  
> b) In (6.33) muss also [mm]y=f(h_1(t) , h_2(t)) = e^{t^3}*sin(1+t^2)[/mm]
> statt [mm]\vec y[/mm] stehen - richtig?
>  
> Somit müsste ich (6.33) so umschreiben [mm]\bruch{d y(h_1(t),h_2(t))}{dt}=\sum_{k=1}^{2} \bruch{\partial y(x_1,x_2)}{\partial x_k} \bruch{d x_k}{dt} = \bruch{\partial y(x_1,x_2)}{\partial x_1}*\bruch{d x_1}{dt} + \bruch{\partial y(x_1,x_2)}{\partial x_2}*\bruch{d x_2}{dt}[/mm]
>  
> Ich habe damit nun folgendes berechnet
> [mm]\bruch{dy}{dt}=e^{x_1}*sin(x_2)*3t^2+e^{x_1}*cos(x_2)*2t[/mm]
>  und wie geht's nun weiter?

Wenn du nun [mm] $x_1(t)=t^3$, $x_2(t)=1+t^2$ [/mm] einsetzt, siehst du, dass dasselbe herauskommt wie oben.

>
> Lösung Aufgabe 2
>  Die Richtungsableitung in Richtung von [mm]\vec a[/mm] mit [mm]|\vec a|=1[/mm]
> war für [mm]f:\IR^2\to\IR[/mm] so definiert
>  [mm]\bruch{\partial f(\vec x_0)}{\partial \vec a}:=grad\ f(\vec x_0)*\vec a[/mm]
>  
> wobei [mm]grad\ f(\vec x_0) = \vec f '(\vec x_0) (Jacobi-Matrix)[/mm]
> ist.
>  Damit erhalte ich [mm]grad\ f(\vec x_0) ={e^0*sin(0) \choose e^0*cos(0)}={0 \choose 1}[/mm]
>  
> und erhalte damit für die Richtungsableitung  
> [mm]\bruch{\partial f(0,0)}{\partial \vec a}={0 \choose 1}*{\bruch{1}{\wurzel{2}} \choose \bruch{1}{\wurzel{2}}}=0+\bruch{1}{\wurzel{2}}=\bruch{1}{\wurzel{2}}[/mm]
>  
> stimmt das so?

Ja, sieht gut aus.

> und was sagt mir das jetzt?

Inwiefern soll dir das was sagen? Willst du die Bedeutung der Richtungsableitung wissen?

> Über Tipps und Rückmeldungen würde ich mich sehr
> freuen.
>  
> LG Olli

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]