matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperRadikal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Radikal
Radikal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Mi 12.11.2014
Autor: evinda

Hallo!!!   :-)

Ich will zeigen dass das Radikal des Ideals [mm] I=\langle x^5, y^3 \rangle [/mm]  im Ring  [mm] \mathbb{C}[x,y], [/mm] das  [mm] Rad(I)=\langle [/mm] x, y [mm] \rangle [/mm] ist.


Ich habe folgendes versucht:

[mm] x^5 \in [/mm] I [mm] \Rightarrow [/mm] x [mm] \in [/mm] Rad(I)

[mm] y^3 \in [/mm] I [mm] \Rightarrow [/mm] y [mm] \in [/mm] Rad(I)

Also, [mm] \langle [/mm] x, y [mm] \rangle \subseteq [/mm] Rad(I)


Um zu zeigen dass [mm] \langle [/mm] x, y [mm] \rangle \supseteq [/mm] Rad(I), muss ich folgendes machen?

Sei a [mm] \in [/mm] Rad(I) dann [mm] \exists [/mm] n [mm] \in \mathbb{N} [/mm]  sodass [mm] a^n \in I=\langle x^5, y^3 \rangle [/mm] , das heisst dass [mm] a^n=x^5 \cdot [/mm] k [mm] +y^3 \cdot \lambda [/mm] , k , [mm] \lambda \in \mathbb{C}. [/mm]

Wie kann ich weiter machen?

Wie kann ich zeigen, dass a [mm] \in \langle [/mm] x,y [mm] \rangle [/mm] ?



Ich habe die Frage auch im Matheplanet gestellt.

        
Bezug
Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mi 12.11.2014
Autor: justdroppingby

Hallo,

es ist etwas schwierig dir da zu helfen, weil der Beweis sehr kurz ist.

Welche spezielle Eigenschaft hat denn <x,y> ?

Mit der wäre nur noch $Rad(I) [mm] \neq \mathbb [/mm] C [x,y]$ zu zeigen...

Bezug
                
Bezug
Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Mi 12.11.2014
Autor: evinda

Meinst du, dass ich folgendes benutzen soll?

Wenn M ein maximales Ideal in R ist und wenn I ein Ideal ist, sodass M [mm] \subseteq [/mm] I [mm] \subseteq [/mm] R, dann ist entweder M=I oder M=R.

Bezug
                        
Bezug
Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Mi 12.11.2014
Autor: justdroppingby


> Meinst du, dass ich folgendes benutzen soll?
>  
> Wenn M ein maximales Ideal in R ist und wenn I ein Ideal
> ist, sodass M [mm]\subseteq[/mm] I [mm]\subseteq[/mm] R, dann ist entweder
> M=I oder M=R.

Das ist etwas seltsam ausgedrückt, zum anderen Falsch. (Ein maximales Ideal kann nie der ganze Ring sein.)

Bitte schlag die Definition von maximales Ideal nach. (Und am besten noch die Charakterisierung)
Und ja die sollst du hier ausnützen.


Bezug
        
Bezug
Radikal: Definition eines Ideals
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 Mi 12.11.2014
Autor: Schadowmaster

Hi,

nur eine ganz kurze Anmerkung:


> , das heisst dass [mm]a^n=x^5 \cdot[/mm] k [mm]+y^3 \cdot \lambda[/mm] , k ,
> [mm]\lambda \in \mathbb{C}.[/mm]


Nach Definition eines Ideals darfst du mit beliebigen Elementen aus deinem Ring multiplizieren. Da der Ring in diesem Fall [mm] $\IC[x,y]$ [/mm] ist, muss also auch [mm] $k,\lambda \in \IC[x,y]$ [/mm] gelten.
Insbesondere wäre sowas wie $k = [mm] 5x^2+3xy$ [/mm] durchaus möglich und erlaubt.

Insgesamt wäre es aber wohl leichter die Beweisidee von justdroppingby zu nehmen, vor allem wenn du schon weißt, dass [mm] $\langle x,y\rangle$ [/mm] maximal ist.

Als Tipp dazu: Es ist recht einfach folgende Aussage zu zeigen:
Ist $I [mm] \subsetneqq [/mm] R$ ein echtes Ideal, so ist auch $Rad(I) [mm] \subsetneqq [/mm] R$ ein echtes Ideal.
Und warum dein Ausgangsideal nicht der ganze Ring ist kriegst du sicher hin, oder? :)


lg

Schadow


Bezug
                
Bezug
Radikal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mi 12.11.2014
Autor: evinda

Um zu zeigen dass [mm] \langle [/mm] x, y [mm] \rangle [/mm] ein maximales Ideal ist, muss ich zeigen dass [mm] \mathbb{C}[x,y]/\langle [/mm] x,y [mm] \rangle [/mm] ein Körper ist?

Bezug
                        
Bezug
Radikal: Antwort
Status: (Antwort) fertig Status 
Datum: 02:54 Do 13.11.2014
Autor: Schadowmaster

Das ist eine Möglichkeit, ja.
In diesem Fall kannst du sogar ganz genau angeben um welchen Körper es sich handelt, indem du dich fragst: was bleibt übrig, wenn man $x$ und $y$ beide auf $0$ setzt?

Bezug
                                
Bezug
Radikal: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:43 Do 13.11.2014
Autor: evinda


> Das ist eine Möglichkeit, ja.
>  In diesem Fall kannst du sogar ganz genau angeben um
> welchen Körper es sich handelt, indem du dich fragst: was
> bleibt übrig, wenn man [mm]x[/mm] und [mm]y[/mm] beide auf [mm]0[/mm] setzt?

Dann bleiben die Konstante in [mm] \mathbb{C} [/mm] übrig, oder nicht?

Hat man dann gezeigt dass [mm] \mathbb{C}[x,y]/\langle [/mm] x, y [mm] \rangle [/mm] ?


Kann ich es auch so zeigen?

p(x,y) [mm] \in \mathbb{C}[x,y] [/mm]

[mm] p(x,y)=\sum_{m,n=0}^k a_{mn}x^m y^n [/mm]

modulo [mm] \langle [/mm] x, y [mm] \rangle [/mm] haben wir dass x [mm] \equiv [/mm] 0 und y [mm] \equiv [/mm] 0

Also, [mm] p(x,y)=a_{00} \pmod {\langle x, y \rangle } \in \mathbb{C} [/mm]

Ist es bisher richtig? Wie kann ich weiter machen?



Bezug
                                        
Bezug
Radikal: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 15.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]