matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperNicht eindeutiger ggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Nicht eindeutiger ggT
Nicht eindeutiger ggT < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nicht eindeutiger ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:36 So 11.01.2015
Autor: YuSul

Aufgabe
Sei $R$ ein Integritatsbereich und  $a, b, c [mm] \in [/mm] R$. Zeigen Sie:
I) Wenn $d, d'$ beide größte gemeinsame Teiler von  $a$ und $b$ sind, so gibt es $u [mm] \in R^{\ast}$ [/mm] mit  $d' = [mm] d\cdot [/mm] u$.

II) Wenn $d$ ein großter gemeinsamer Teiler von  $a$ und $b$ ist und wenn [mm] $d^{\sim}$ [/mm] ein größter gemeinsamer Teiler von $d$ und $c$ ist, dann ist [mm] $d^{\sim}$ [/mm] ein größter gemeinsamer Teiler von  $a, b$
und $c$.

Hi,

ich bearbeite gerade diese Aufgabe. Bei der I) bin ich wie folgt vorgegangen:

Es ist [mm] $ggT(a,b)=\{d,d'\}$. [/mm] Also gilt $d|a$ und $d|b$ sowie $d'|a$ und $d'|b$.
Da [mm] $d,d'\in [/mm] ggT(a,b)$ gibt es ein [mm] $c\in [/mm] R$ mit c|d und c|d' für $c|a$ und $c|b$

Da [mm] $d,d'\in [/mm] R$ und beides ggT sind, gilt somit $d|d'$ und $d'|d$. Somit ist

$du=d'$ und $d'u'=d$. Einsetzen liefert

$d'=d'u'u$ also $1=u'u$ Somit $u', [mm] u\in R^{\ast}$ [/mm]

Wäre das in Ordnung?

Ich hätte mal eine allgemeine Frage zur "nicht-Eindeutigkeit" des ggT.
Also zum Beispiel in [mm] $\mathbb{Z}$ [/mm] unterscheidet sich der ggT ja nur am Vorzeichen.
Ist das allgemein so?

        
Bezug
Nicht eindeutiger ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 04:49 So 11.01.2015
Autor: Schadowmaster

moin,

>  Hi,
>  
> ich bearbeite gerade diese Aufgabe. Bei der I) bin ich wie
> folgt vorgegangen:
>  
> Es ist [mm]ggT(a,b)=\{d,d'\}[/mm].

Nein. Wie ist der ggT bei euch definiert? Es ist sicher keine Menge mit nur zwei Elementen. Ich weiß schon was du meinst, aber formal ist das nicht ganz sauber.


> Also gilt [mm]d|a[/mm] und [mm]d|b[/mm] sowie [mm]d'|a[/mm]
> und [mm]d'|b[/mm].
>  Da [mm]d,d'\in ggT(a,b)[/mm] gibt es ein [mm]c\in R[/mm] mit c|d und c|d'
> für [mm]c|a[/mm] und [mm]c|b[/mm]

Ja, etwa $c=1$. Ich sehe aber noch nicht, was dir das bringt.


> Da [mm]d,d'\in R[/mm] und beides ggT sind, gilt somit [mm]d|d'[/mm] und [mm]d'|d[/mm].

Darauf willst du hinaus, aber so wie sie bisher da steht, ist deine Argumentation noch sehr lückenhaft. Hier wäre es wiederum gut zu wissen, wie ihr ggT definiert habt. Als Erzeuger eines Ideals? Über die Primfaktorzerlegung?

> Somit ist
>
> [mm]du=d'[/mm] und [mm]d'u'=d[/mm]. Einsetzen liefert
>
> [mm]d'=d'u'u[/mm] also [mm]1=u'u[/mm]

Vorsicht hier. Nehmen wir als Beispiel [mm] $R=\IZ/6\IZ$, [/mm] so gilt [mm] $2\cdot [/mm] 4 = 2$, aber $4 [mm] \neq [/mm] 1$. Die Aussage stimmt, aber nur weil wir in einem Integritätsbereich sind. Deshalb solltest du hier genau die benötigte Eigenschaft verwenden und auch darauf hinweisen, dass du sie verwendest.

> Somit [mm]u', u\in R^{\ast}[/mm]
>  
> Wäre das in Ordnung?
>  
> Ich hätte mal eine allgemeine Frage zur
> "nicht-Eindeutigkeit" des ggT.
>  Also zum Beispiel in [mm]\mathbb{Z}[/mm] unterscheidet sich der ggT
> ja nur am Vorzeichen.
>  Ist das allgemein so?

Du hast dir diese Frage bereits mit Aufgabe 1 beantwortet. Im allgemeinen unterscheidet der ggT sich um Einheiten. In [mm] $\IZ$ [/mm] sind das halt zufällig nur [mm] $\pm [/mm] 1$, es kann aber deutlich mehr Einheiten in einem Ring geben - im Polynomring über einem Körper zum Beispiel alle Konstanten ungleich $0$. Die Umkehrung von 1, also dass wenn $d$ ein ggT und $u$ eine Einheit ist, dass dann auch $du$ ein ggT ist, kriegt man recht einfach hin.

Bezug
                
Bezug
Nicht eindeutiger ggT: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 So 11.01.2015
Autor: YuSul

Den ggT haben wir so definiert.

Sei R ein integritätsbereich seien [mm] $b_1, [/mm] ..., [mm] b_n\in [/mm] R$. Wir nennen a größten gemeinsamen Teiler von [mm] $b_1, [/mm] ..., [mm] b_n$, [/mm] wenn gilt:

1) [mm] $a|b_1, [/mm] ..., [mm] a|b_n$ [/mm]

2) Ist [mm] $c\in [/mm] R$ und gilt [mm] $c|b_1, [/mm] ...., [mm] c|b_n$ [/mm] so gilt $c|a$.

> Nein. Wie ist der ggT bei euch definiert? Es ist sicher keine Menge mit nur
> zwei Elementen. Ich weiß schon was du meinst, aber formal ist das nicht ganz
> sauber.

Dann würde ich es einfach so notieren:

$ggT(a,b)=d$ und $ggT(a,b)=d'$



Bezug
                        
Bezug
Nicht eindeutiger ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 10:06 Mo 12.01.2015
Autor: UniversellesObjekt

Du solltest einfach sagen, seien $d,d'$ beides größte gemeinsame Teiler. Das heißt einfach, dass $d$ und $d'$ beides Ringelemente sind, die Eigenschaft $1$ und $2$ erfüllen. Dann kannst du folgern, dass [mm] $d\mid [/mm] d'$ und [mm] $d'\mid [/mm] d$, wie du es schon im Startbeitrag getan hast, und daraus folgt, weil wir in einem Integritätsbereich arbeiten, dass $d$ und $d'$ sich um Einheiten unterscheiden.

Zu deiner Ausgangsfrage, die Shadowmaster eigentlich schon beantwortet hat: Betrachte z.B. [mm] $R=\IR[T]$, $a=T,b=T^2$. [/mm] Dann sind ist $xT$ ein größter gemeinsamer Teiler für [mm] $r\in\IR$ [/mm] beliebig ungleich Null.

Liebe Grüße,
UniversellesObjekt

Bezug
                                
Bezug
Nicht eindeutiger ggT: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:29 Mo 12.01.2015
Autor: YuSul

Ok. Dann muss ich die I) also nur noch sauberer aufschreiben.

Zur Aufgabe II)

Ich weiß, dass $ggT(a,b)=d$ und [mm] $ggT(a,b,c)=d^{\sim}$ [/mm]

Nun soll ich zeigen, dass [mm] $ggT(a,b,c,)=d^{\sim}$. [/mm]

Wir wissen, dass

$d|a$ und $d|b$ sowie [mm] $d^{\sim}|d$ [/mm] und [mm] $d^{\sim}|c$ [/mm] gilt.

Weil [mm] $d^{\sim}|d$ [/mm] gilt auch [mm] $d^{\sim}|a$ [/mm] und [mm] $d^{\sim}|b$ [/mm] und [mm] $d^{\sim}|c$, [/mm] da die Teilbarkeitsrelation transitiv ist.

Nun muss ich nur noch zeigen, dass für [mm] $e\in [/mm] R$ beliebig mit $e|a$ und $e|b$ und $e|c$ bereits [mm] $e|d^{\sim}$ [/mm] gilt.

Das gelingt mir jedoch nicht ganz. Ich hatte so angefangen, dass ich aus den ganzen Teilerbeziehungen ja weiß, dass

$ek=a$. Es gilt aber auch $dn=a$ also

$ek=dn$ und weil [mm] $d^{\sim}m=d$ [/mm] ist

[mm] $ek=d^{\sim}mn$ [/mm]

Jetzt müsste ich noch zeigen, dass $mn|k$ gilt.

Das kommt mir aber wie ein falscher Ansatz vor.

Bezug
                                        
Bezug
Nicht eindeutiger ggT: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 14.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]