matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMaximum-Likelihood
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Maximum-Likelihood
Maximum-Likelihood < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood: Korrektur,Idee
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 22.01.2015
Autor: PeterPaul

Aufgabe
Sei $ [mm] \Theta [/mm] = [mm] (0,\infty) [/mm] $ und seien $ [mm] x_1,...,x_n$ [/mm]  Realisierungen von unabhängigen,identisch verteilten Zufallsvariablen $ [mm] X_1,...,X_n,$ [/mm] die einer $ [mm] N(0,\sigma^2)-$ [/mm] Verteilung mit $  [mm] \sigma^2 \in \Theta$ [/mm]  folgen.

$ a)$ Berechnen Sie den Maximum-Likelihood-Schätzer von$  [mm] \sigma^2$ [/mm]  für $ [mm] x_1,..,x_n$ [/mm]


$ b)$  Zeigen sie,dass der Maximum-Likelihood-Schätzer  aus$  a) $ erwartungstreu ist.


$ c) $ Zeigen sie,dass der Maximum-Likelihood-Schätzer  aus $ a)$  konsistent ist.



a)

ich würde da $log L [mm] (\sigma; X_1,....,X_n)= [/mm] log( [mm] \produkt_{i=1}^{n} \frac{1}{\sqrt{2\pi}} [/mm] * [mm] \frac{1}{\sigma} [/mm] * [mm] e^{-\frac{1}{2}*(\frac{x-\mu}{\sigma})^2} [/mm] )$ anwenden.

weiterhin ist bekannt [mm] \mu [/mm] = 0

also

$log L [mm] (\sigma; X_1,....,X_n)= [/mm] log( [mm] \produkt_{i=1}^{n} \frac{1}{\sqrt{2\pi}} [/mm] * [mm] \frac{1}{\sigma} [/mm] * [mm] e^{-\frac{1}{2}*(\frac{x}{\sigma})^2} [/mm] ) =  log(  [mm] \frac{1^n}{(\sqrt{2\pi}*\sigma)^n} [/mm] * [mm] e^{\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})}= log(\frac{1}{(\sqrt{2\pi}*\sigma)^n})*\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2}) [/mm] $



also $log L [mm] (\sigma; X_1,....,X_n)=log(\frac{1}{(\sqrt{2\pi}*\sigma)^n})*\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2}) [/mm] $


jetzt hab ich irgendwie keine Ahnung mehr.... -.-


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



Ich habe irgendwie das falsche Forum ausgewählt sorry...:/

        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Sa 24.01.2015
Autor: hanspeter.schmid


> Ich habe irgendwie das falsche Forum ausgewählt sorry...:/

Ich kann das nicht abstreiten ;)  Habe nur zufällig in dieses Forum geschaut.

> also [mm]log L (\sigma; X_1,....,X_n)=log(\frac{1}{(\sqrt{2\pi}*\sigma)^n})*\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
>
> jetzt hab ich irgendwie keine Ahnung mehr.... -.-

Tipp: $\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})=\frac{1}{2*\sigma^2}\sum_{i=1}^{n}(-x^2_i})$

Hilft der?

Bezug
        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Sa 24.01.2015
Autor: hanspeter.schmid

Fast übersehen: [mm] $\log [/mm] ab = [mm] \log [/mm] a + [mm] \log [/mm] b$, deshalb statt

> [mm]log L (\sigma; X_1,....,X_n)= log( \produkt_{i=1}^{n} \frac{1}{\sqrt{2\pi}} * \frac{1}{\sigma} * e^{-\frac{1}{2}*(\frac{x}{\sigma})^2} ) = log( \frac{1^n}{(\sqrt{2\pi}*\sigma)^n} * e^{\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})}= log(\frac{1}{(\sqrt{2\pi}*\sigma)^n})*\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})[/mm]

eher

[mm]log L (\sigma; X_1,....,X_n)= log( \produkt_{i=1}^{n} \frac{1}{\sqrt{2\pi}} * \frac{1}{\sigma} * e^{-\frac{1}{2}*(\frac{x}{\sigma})^2} ) = log( \frac{1^n}{(\sqrt{2\pi}*\sigma)^n} * e^{\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})}= log(\frac{1}{(\sqrt{2\pi}*\sigma)^n})+\sum_{i=1}^{n}(-\frac{x^2_i}{2*\sigma^2})[/mm]


Bezug
                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:27 Mo 02.02.2015
Autor: PeterPaul

[mm] $log(\frac{1}{(\sqrt{2\pi})^n}*\frac{1}{\sigma^n})+(-\frac{1}{2\cdot{}\sigma^2})\sum_{i=1}^{n}x^2_i [/mm] $

[mm] $\gdw -\frac{n}{2}log(2\pi)+-nlog(\sigma)+(-\frac{1}{2\cdot{}\sigma^2})\sum_{i=1}^{n}x^2_i [/mm] $

substituiere [mm] $t=\sigma^2$ [/mm]

[mm] $\Rightarrow -\frac{n}{2}\cdot{}log(2\pi)+-n\cdot{}log(\sqrt{t})+(-\frac{1}{2\cdot{}t})\sum_{i=1}^{n}x^2_i [/mm] $

[mm] $LogL(\sigma^2, x_1,..,x_n)=-n*\frac{1}{2t}+\frac{1}{2t^2}\sum_{i=1}^{n}x^2_i [/mm] $


jetzt extrema berechnen

[mm] $0=-n*\frac{1}{2t}+\frac{1}{2t^2}\sum_{i=1}^{n}x^2_i [/mm] $

[mm] $\gdw \frac{n}{2t}= \frac{1}{2t^2}\sum_{i=1}^{n}x^2_i [/mm] $

[mm] $\gdw n\cdot{}t= 1\cdot{}\sum_{i=1}^{n}x^2_i [/mm] $

[mm] $\gdw [/mm] t= [mm] \frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i [/mm] $

resubstituiert $t= [mm] \sigma^2$ [/mm]

[mm] $\Rightarrow \sigma^2= \frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i [/mm] $

$b)$  erwartungstreu

[mm] $E[\sigma^2]= E[\frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i [/mm] ]= [mm] \frac{1}{n}\cdot{}\sum_{i=1}^{n}E[x^2_i]= \frac{1}{n}\cdot{}n\cdot{}E[x^2]= E[x^2] [/mm] $ ist erwartungstreu

$c)$

leider weiss ich nicht ,wie man richtig die konsistenz prüft

muss ich da zeigen,dass$ [mm] E[X_n] \to [/mm] a$ und [mm] $Var(X_n) \to [/mm] 0$ ,dass dann [mm] $X_n \overbrace{\to}^{p}a$ [/mm]

??


Bezug
                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Mo 02.02.2015
Autor: luis52


>
> [mm]log(\frac{1}{(\sqrt{2\pi})^n}*\frac{1}{\sigma^n})+(-\frac{1}{2\cdot{}\sigma^2})\sum_{i=1}^{n}x^2_i[/mm]
>  
> [mm]\gdw -\frac{n}{2}log(2\pi)+-nlog(\sigma)+(-\frac{1}{2\cdot{}\sigma^2})\sum_{i=1}^{n}x^2_i[/mm]
>  
> substituiere [mm]t=\sigma^2[/mm]
>  
> [mm]\Rightarrow -\frac{n}{2}\cdot{}log(2\pi)+-n\cdot{}log(\sqrt{t})+(-\frac{1}{2\cdot{}t})\sum_{i=1}^{n}x^2_i[/mm]
>  
> [mm]LogL(\sigma^2, x_1,..,x_n)=-n*\frac{1}{2t}+\frac{1}{2t^2}\sum_{i=1}^{n}x^2_i[/mm]
>  
>
> jetzt extrema berechnen
>  
> [mm]0=-n*\frac{1}{2t}+\frac{1}{2t^2}\sum_{i=1}^{n}x^2_i[/mm]
>  
> [mm]\gdw \frac{n}{2t}= \frac{1}{2t^2}\sum_{i=1}^{n}x^2_i[/mm]
>  
> [mm]\gdw n\cdot{}t= 1\cdot{}\sum_{i=1}^{n}x^2_i[/mm]
>  
> [mm]\gdw t= \frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i[/mm]
>  
> resubstituiert [mm]t= \sigma^2[/mm]
>  
> [mm]\Rightarrow \sigma^2= \frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i[/mm]

Moin, du musst mit der Notation aufpassen und zwischen Schaetzer und zu schaetzendem Parameter unterscheiden. Setze z.B. [mm] $\widehat{\sigma^2}= \frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i$ [/mm] zur Unterscheidung von der Modellvarianz [mm] $\sigma^2$. [/mm]


>  
> [mm]b)[/mm]  erwartungstreu
>  
> [mm]E[\sigma^2]= E[\frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i ]= \frac{1}{n}\cdot{}\sum_{i=1}^{n}E[x^2_i]= \frac{1}{n}\cdot{}n\cdot{}E[x^2]= E[x^2][/mm]
> ist erwartungstreu

Und?

Zeige [mm] $\operatorname{E}[\widehat{\sigma^2}]=\sigma^2$. [/mm]


>  
> [mm]c)[/mm]
>  
> leider weiss ich nicht ,wie man richtig die konsistenz
> prüft
>  
> muss ich da zeigen,dass[mm] E[X_n] \to a[/mm] und [mm]Var(X_n) \to 0[/mm]
> ,dass dann [mm]X_n \overbrace{\to}^{p}a[/mm]

Zeige  [mm] $\operatorname{E}[\widehat{\sigma^2}]\to\sigma^2$ [/mm] und  [mm] $\operatorname{Var}[\widehat{\sigma^2}]\to [/mm] 0$. Die erste Eigenschaft ist klar wegen  [mm] $\operatorname{E}[\widehat{\sigma^2}]=\sigma^2$. [/mm]
  

  


Bezug
                                
Bezug
Maximum-Likelihood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:27 Di 03.02.2015
Autor: PeterPaul

$b)$

Voraussetzung

$Var(X)= [mm] E[X^2]-(E[X])^2 [/mm] , $da$ E[X]=0 $und $Var(X)= [mm] \sigma^2 \Rightarrow E[X^2]= \sigma^2$ [/mm]

$ [mm] \operatorname{E}[\widehat{\sigma^2}]= E[\frac{1}{n}\cdot{}\sum_{i=1}^{n}x^2_i [/mm] ]= [mm] \frac{1}{n}\cdot{}\sum_{i=1}^{n}E[x^2_i]= \frac{1}{n}\cdot{}n\cdot{}E[X^2]= [/mm] $ laut Voraussetzung  = [mm] \sigma^2 \Rightarrow [/mm]

$ [mm] \operatorname{E}[\widehat{\sigma^2}]= \sigma^2$ [/mm]


konsistenz:

[mm] $Var(\widehat{\sigma^2})= \frac{1}{n^2} \sum_{i=1}^{n}Var(X_i^2) =\frac{1}{n^2} \cdot{} [/mm] n [mm] \cdot{}Var(X_1^2) [/mm] = [mm] \frac{1}{n}*Var(X_1^2)= \frac{\sigma^4}{n} \to [/mm] 0 ( n [mm] \to \infty)$ [/mm]

Im Bei text war geben ,dass wir nicht zeigen müssen,dass
[mm] $Var(X)<\infty$ [/mm]
ist

.Also ist der Schätzer auch konsistent

Bezug
                                        
Bezug
Maximum-Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 03.02.2015
Autor: luis52


> [mm]Var(\widehat{\sigma^2})= \frac{1}{n^2} \sum_{i=1}^{n}Var(X_i^2) =\frac{1}{n^2} \cdot{} n \cdot{}Var(X_1^2) = \frac{1}{n}*Var(X_1^2)= \frac{\sigma^4}{n} \to 0 ( n \to \infty)[/mm]
>  


Kleiner Schoenheitsfehler:

[mm] $\operatorname{Var}(X_1^2)=\sigma^2\operatorname{Var}((X_1/\sigma)^2)=2\sigma^2$, [/mm] da [mm] $X_1/\sigma$ [/mm] standardnormalverteilt und
[mm] $(X_1/\sigma) [/mm] ^2$ somit [mm] $\chi^2(1)$-verteilt [/mm] ist.

Sonst kann ich keinen Fehler entdecken.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]