matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperGruppe nachweisen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Gruppe nachweisen
Gruppe nachweisen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 07.06.2016
Autor: Trikolon

Hallo,

wie kann ich zeigen, dass es sich bei [mm] f((x,y)A^t) [/mm] um eine Rechtsgruppenoperation handelt? Dabei ist A [mm] \in SL_2(\IZ). [/mm]

Danke schon mal!

        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 07.06.2016
Autor: fred97


> Hallo,
>  
> wie kann ich zeigen, dass es sich bei [mm]f((x,y)A^t)[/mm] um eine
> Rechtsgruppenoperation handelt? Dabei ist A [mm]\in SL_2(\IZ).[/mm]
>  
> Danke schon mal!

Hmm mm,  die Frage könnte man eventuell beantworten, wenn Du preisgibt,  was f ist.

fred



Bezug
                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 07.06.2016
Autor: Trikolon

Sorry, es ist [mm] f(x,y)=ax^2+bxy+cy^2 [/mm]

Bezug
                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Di 07.06.2016
Autor: hippias

Zuerst musst Du wissen, wie eine Rechtsoperation definiert ist (dass [mm] $SL_{2}(\IZ)$ [/mm] eine Gruppe ist, ist klar). Wie also lautet die Definition?


Bezug
                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Di 07.06.2016
Autor: Trikolon

Wenn X x G [mm] \to [/mm] X, (x,g)=x.g, mit
x.(g*h)=(x.g).h für alle g,h [mm] \in [/mm] G und x [mm] \in [/mm] X
x.e=x für alle x [mm] \in [/mm] X und e [mm] \in [/mm] G neutrales Element


Bezug
                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Mi 08.06.2016
Autor: hippias

So, und das rechnest Du nach! Beachte dabei, dass die Multiplikation nach Definition abgeschlossen sein muss, d.h. das Bild von $f$ unter $A$ muss in der gleichen Menge liegen, aus der $f$ kommt. Welche Menge ist das übrigens? Du solltest Dir angewöhnen die Aufgaben vollständig mitzuteilen denn dann geht alles viel einfacher.

Wenn Du willst kannst Du auch ersteinmal an einem konkreten Beispiel üben: Sei etwa $f(x,y)= [mm] x^{2}+2xy+3y^{2}$ [/mm] und $A= [mm] \begin{pmatrix}2&1\\1&1\end{pmatrix}$. [/mm] Wie lauten die Koeffizienten bei [mm] $x^{2}$, [/mm] bei $xy$ und bei [mm] $y^{2}$ [/mm] von $f((x,y)A)$?

Bezug
                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Do 09.06.2016
Autor: Trikolon

f kommt aus [mm] \IZ^2. [/mm] In Bezug auf das Bsp. bekäme ich [mm] 11x^2+16xy+6y^2. [/mm]


Bezug
                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Do 09.06.2016
Autor: hippias


> f kommt aus [mm]\IZ^2.[/mm]

Nein.

> In Bezug auf das Bsp. bekäme ich
> [mm]11x^2+16xy+6y^2.[/mm]
>  

Ich habe das gleiche Ergebnis. Also prüfe die von Dir genannten Bedingungen für allgemeines $f= [mm] ax^2+bxy+cy^2$ [/mm] und allgemeines $A= [mm] \begin{pmatrix} \alpha& \beta\\ \gamma\ & \delta\end{pmatrix}$ [/mm] nach.

Bezug
                                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:56 Mi 15.06.2016
Autor: Trikolon

Gut, das neutrale Element ist ja einfach die Einheitsmatrix oder?

Und es ist ja [mm] f((x,y)A^t)=f(\alpha, \gamma)x^2+(2(a \alpha \beta [/mm] + c [mm] \gamma \delta)+b( \alpha \delta+ \beta \gamma))xy+f( \beta, \delta)y^2 [/mm]

Ist damit gezeigt, dass es sich tatsächlich um eine (Rechts-)Gruppenoperation handelt?

Bezug
                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 15.06.2016
Autor: hippias


> Gut, das neutrale Element ist ja einfach die Einheitsmatrix
> oder?
>  
> Und es ist ja [mm]f((x,y)A^t)=f(\alpha, \gamma)x^2+(2(a \alpha \beta[/mm]
> + c [mm]\gamma \delta)+b( \alpha \delta+ \beta \gamma))xy+f( \beta, \delta)y^2[/mm]
>  
> Ist damit gezeigt, dass es sich tatsächlich um eine
> (Rechts-)Gruppenoperation handelt?

Tja, wenn man das wüsste! Sieh mal hier; kommt Dir vielleicht bekannt vor...

Bezug
                                                                                
Bezug
Gruppe nachweisen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:42 Mi 15.06.2016
Autor: Trikolon

Ehrlich gesagt hat mir die Antwort jetzt nicht weitergeholfen. Ich hätte gesagt ja. Und falls nicht, bräuchte ich etwas Unterstützung.

Bezug
                                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Do 16.06.2016
Autor: hippias

Kein Problem! Also nocheinmal: Wie lauten nach Definition die Bedingungen für die Operation einer Gruppe auf einer Menge? Hast Du diese für Deine Menge und Deine Gruppe nachgerechnet?

Bezug
                                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 27.07.2016
Autor: Trikolon

Wenn x und y nur ganzzahlige Werte annehmen sollen, weshalb sollte f dann nicht aus [mm] \IZ^2 [/mm] kommen?

Und noch mal zum Nachweis:
Dass die Einheitsmatrix das neutrale Element ist, ist klar.
Für x(g*h) erhalte ich in unserem Fall mit g= [mm] \pmat{ \alpha & \beta \\ \gamma & \delta } [/mm] und [mm] h=\pmat{ d & e \\ f & g } f((\alpha [/mm] d+ [mm] \beta f)x+(\gamma [/mm] d+ [mm] \delta f)y,(\alpah [/mm] e+ [mm] \gamma [/mm] y, [mm] \beta [/mm] x+ [mm] \delta [/mm] y))
Und für (xg)h habe ich [mm] f(d(\alpha [/mm] x+ [mm] \gamma [/mm] y)+f( [mm] \beta [/mm] x+ [mm] \delta [/mm] y), e [mm] (\alpah [/mm] x+ [mm] \gamma [/mm] y)+g( [mm] \beta [/mm] x+ [mm] \delta [/mm] y))
Aber diese beiden Ergebnisse sind ja nicht gleich... Wo ist denn mein Fehler?
(Es war [mm] f(x,y)=ax^2+bx+cy^2)[/mm]

Bezug
                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 27.07.2016
Autor: hippias


> Wenn x und y nur ganzzahlige Werte annehmen sollen, weshalb
> sollte f dann nicht aus [mm]\IZ^2[/mm] kommen?

Dann erinnere Dich doch bitte was $f$ ist.

>  Und noch mal zum Nachweis:
>  Dass die Einheitsmatrix das neutrale Element ist, ist
> klar.
>  Für x(g*h) erhalte ich in unserem Fall mit g= [mm]\pmat{ \alpha & \beta \\ \gamma & \delta }[/mm]
> und [mm]h=\pmat{ d & e \\ f & g } f((\alpha[/mm] d+ [mm]\beta f)x+(\gamma[/mm]
> d+ [mm]\delta f)y,(\alpah[/mm] e+ [mm]\gamma[/mm] y, [mm]\beta[/mm] x+ [mm]\delta[/mm] y))
>  Und für (xg)h habe ich [mm]f(d(\alpha[/mm] x+ [mm]\gamma[/mm] y)+f( [mm]\beta[/mm]
> x+ [mm]\delta[/mm] y), e [mm](\alpah[/mm] x+ [mm]\gamma[/mm] y)+g( [mm]\beta[/mm] x+ [mm]\delta[/mm]
> y))
>  Aber diese beiden Ergebnisse sind ja nicht gleich... Wo
> ist denn mein Fehler?

Oberflächlichkeit? Das Ergebnis von $f(gh)$ ist doch ganz unsinnig. $(fg)h$ sieht vernünftig aus, obwohl nicht fehlerfrei.

>  (Es war [mm]f(x,y)=ax^2+bx+cy^2)[/mm]  

Sicher?



Bezug
                                                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Mi 27.07.2016
Autor: Trikolon

Dann verrate mir doch mal, wo f herkommt?
Die genaue Definition ist nämlich f: [mm] \IZ^2 \to \IZ, f(x,y)=ax^2+bxy+cy^2. [/mm]

Wie soll denn sonst f(gh) berechnet werden? Es wäre nett, wenn du mir mal ein paar Hinweise geben könntest...

Man hat ja dann f((x,y) [mm] \pmat{ \alpha g + \beta i & \alpha h + \beta f \\ \gamma g + \delta i & \gamma h + \delta f }^T). [/mm] Falls nicht, wie soll es sonst gehen?

Beim zweiten habe ich vergessen zu transponieren, stimmt.

Bezug
                                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 27.07.2016
Autor: hippias


> Dann verrate mir doch mal, wo f herkommt?
>  Die genaue Definition ist nämlich f: [mm]\IZ^2 \to \IZ, f(x,y)=ax^2+bxy+cy^2.[/mm]

Na also: $f$ kommt nicht aus [mm] $\Iz^{2}$, [/mm] sondern ist eine quadratische Form und ist damit kein Tupel ganzer Zahlen.

>  
> Wie soll denn sonst f(gh) berechnet werden? Es wäre nett,
> wenn du mir mal ein paar Hinweise geben könntest...

Mach es doch einfach mal! Und zwar ohne die Hälfte zu vergessen, denn Dein Vorschlag aus dem letzten Post war ja

$ [mm] f((\alpha [/mm]  d+  [mm] \beta f)x+(\gamma [/mm]  d+  [mm] \delta f)y,(\alpah [/mm]  e+  [mm] \gamma [/mm]  y,  [mm] \beta [/mm]  x+  [mm] \delta [/mm]  y))$

was man wohl kaum als ernsthaften Versuch ansehen kann, das in Frage stehende Produkt auszurechnen. Welche Tips soll man Dir da geben: wie man Matrizen multipliziert steht in Deinem Skript.

Zu Deinen ständig wechselnden Bezeichnungen r raten, das sein zu lassen, sondern bei sich auf eine festzulegen und Doppelbezeichnungn zu vermeiden, da dies zu missverständnissen führt und meist als Fehler angesehen wird.

> Man hat ja dann f((x,y) [mm]\pmat{ \alpha g + \beta i & \alpha h + \beta f \\ \gamma g + \delta i & \gamma h + \delta f }^T).[/mm]
> Falls nicht, wie soll es sonst gehen?
>  
> Beim zweiten habe ich vergessen zu transponieren, stimmt.

Was mir gar nicht aufgefallen ist, aber natürlich ein weiterer und absolut vermeidbarer Grund dafür, weshalb nicht das gewünschte Resultat herauskommt.

Es ist doch so, dass es bei solch einfachen Aufgaben, bei denen nur irgendwelche Definitionen durchgegangen werden müssen, meist an Rechenfehlern scheitert. Dann muss man halt die Rechnungen nocheinmal durchgehen.


Bezug
                                                                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mi 27.07.2016
Autor: Trikolon

Da haben wir dann aneinander vorbei geredet, ich dachte deine Frage zielt darauf ab, aus welcher Menge (x,y) kommt.

Dann ein neuer Versuch mit g=  [mm] \pmat{ \alpha & \beta \\ \gamma & \delta } [/mm] und [mm] h=\pmat{ d & e \\ f & g }. [/mm] Dann ist f(gh)=f [mm] \pmat{ \alpha d + \beta f & \gamma d+ \delta f \\ \alpha e + \beta g & \gamma e + \delta g }= [/mm] (wobei die Matrix schon transponiert wurde). Jetzt muss ich doch (x,y) mal diese Matrix rechnen, oder habe ich das falsch verstanden?

Bezug
                                                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 27.07.2016
Autor: hippias


> Da haben wir dann aneinander vorbei geredet, ich dachte
> deine Frage zielt darauf ab, aus welcher Menge (x,y)
> kommt.

Kein Problem.

>  
> Dann ein neuer Versuch mit g=  [mm]\pmat{ \alpha & \beta \\ \gamma & \delta }[/mm]
> und [mm]h=\pmat{ d & e \\ f & g }.[/mm] Dann ist f(gh)=f [mm]\pmat{ \alpha d + \beta f & \gamma d+ \delta f \\ \alpha e + \beta g & \gamma e + \delta g }=[/mm]
> (wobei die Matrix schon transponiert wurde). Jetzt muss ich
> doch (x,y) mal diese Matrix rechnen, oder habe ich das
> falsch verstanden?

Das ist alles richtig.


Bezug
                                                                                                                
Bezug
Gruppe nachweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 27.07.2016
Autor: Trikolon

Und wenn ich dieses Produkt ausrechne, erhalte ich
[mm] f((\alpha [/mm] d+ [mm] \beta [/mm] f)x+( [mm] \alpha [/mm] e + [mm] \beta [/mm] g)y, [mm] (\gamma [/mm] d+ [mm] \delta [/mm] f)x + [mm] (\gamma [/mm] e + [mm] \delta [/mm] g)y)

Und bei (fg)h ist ja

[mm] (fg)=f(\alpha [/mm] x + [mm] \beta [/mm] y, [mm] \gamma [/mm] x+ [mm] \delta [/mm] y), oder?
Und dann
[mm] f((\alpha [/mm] x + [mm] \beta [/mm] y, [mm] \gamma [/mm] x+ [mm] \delta [/mm] y) [mm] \pmat{ d & f \\ e & g }). [/mm]
= f( d( [mm] \alpha [/mm] x+ [mm] \beta [/mm] y)+e( [mm] \gamma [/mm] x + [mm] \delta [/mm] y), f( [mm] \alpha [/mm] x + [mm] \beta [/mm] y)+g( [mm] \gamma [/mm] x + [mm] \delta [/mm] y))


Bezug
                                                                                                                        
Bezug
Gruppe nachweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:26 Do 28.07.2016
Autor: hippias

Alles richtig. Für den nächsten Schritt beachte, dass eine Voraussetzung noch nicht eingegangen ist: man operiert mit [mm] $SL_{2}(\IZ)$. [/mm]

Bezug
                                                                                                                                
Bezug
Gruppe nachweisen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:25 Mo 01.08.2016
Autor: Trikolon

Ok, da habe ich dann jeweils das selbe Ergebnis erhalten, also gilt
[mm] f((x,y)(gh)^T)=f(((x,y)g^T)h^T). [/mm] Damit ist doch dann alles bewiesen, richtig?

Bezug
                                                                                                                                        
Bezug
Gruppe nachweisen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 03.08.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]