matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperDiskriminant Normierte Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Diskriminant Normierte Polynom
Diskriminant Normierte Polynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskriminant Normierte Polynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:45 Mo 30.01.2017
Autor: Joseph95

Aufgabe
Für [mm] \alpha \in \IC [/mm] bezeichnen wir mit [mm] t_\alpha [/mm] : [mm] \IC[X] \to \IC[X] [/mm]  den Homomorphismus, der auf [mm] \IC [/mm] die Identität ist und [mm] t_\alpha(X) [/mm] = X + [mm] \alpha [/mm] erfüllt. Zeige, dass disc(f) = [mm] disc(t_\alpha(f)) [/mm] für jedes normierte Polynom f [mm] \in \IC[X] [/mm] und jedes [mm] \alpha \in \IC [/mm] gilt.

Hey Leute,

ich bräuchte nochmal eure Hifle... Ich habe bei der oben genannten Aufgabe leider keinen Ansatz. Könnte ich die Aufgabe in Zusammenarbeit mit den hier interessierten bearbeiten? Ich würde mich diesbezüglich sehr freuen. :)


Mit freundlichen Grüßen,
Joseph95

        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Mo 30.01.2017
Autor: hippias

Wie bestimmst Du die Diskriminante eines Polynoms [mm] $g\in \IC[X]$? [/mm]

Bezug
                
Bezug
Diskriminant Normierte Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 30.01.2017
Autor: Joseph95

Naja, ich habe für die Definition der Diskriminante wie folgt:
Da wir uns in [mm] \IC[X] [/mm] bewegen, haben wir ja nur eine Unbekannte, weshalb sich die Diskriminante wie folgt bestimmen lässt:
Da wir uns in [mm] \IC [/mm] befinden, lässt sich nach dem FundamentalSatz der Linearen Algebra das Polynom in linear Faktoren aufteilen.
Sprich unser f wäre ein Polynom der Darstellung:
f = [mm] \produkt_{i=1}^{n} (X-a_i) [/mm] , wobei [mm] a_i [/mm] die Nullstellen des Polynoms sind. Die Diskriminante wäre dann wie folgt:
disc(f) = [mm] \produkt_{i Aber in wie weit bringt mir das hier weiter?

Joseph95

Bezug
                        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Mo 30.01.2017
Autor: hippias

Die Berechnung kann durch Kenntniss der Nullstellen erfolgen. Wie hängen die Nullstellen vo $f$ und [mm] $t_{\alpha}(f)$ [/mm] zusammen?

Bezug
                                
Bezug
Diskriminant Normierte Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mo 30.01.2017
Autor: Joseph95

Ich würde mal denken, dass die Nullstellen um [mm] \alpha [/mm] verschoben sind, oder? Da ich ja f lediglich um [mm] \alpha [/mm] verschiebe... oder irre ich mich?

Bezug
                                        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 04:57 Di 31.01.2017
Autor: fred97


> Ich würde mal denken, dass die Nullstellen um [mm]\alpha[/mm]
> verschoben sind, oder? Da ich ja f lediglich um [mm]\alpha[/mm]
> verschiebe... oder irre ich mich?

Wie wäre es mit ein wenig Einsatz ..... ?

1. Was ist [mm] t_{\alpha}(X^k) [/mm] ?

2. Was ist  [mm] t_{\alpha}(f) [/mm] , wenn [mm] f=a_nX^n+....+a_1X+a_0 [/mm] ?

3. Wie hängen die Nullstellen von f und  [mm] t_{\alpha}(f) [/mm] zusammen ?

Rechnen , knobeln, überlegen, auf die Schnauze fallen, wieder knobeln..., so macht man Mathematik.




Bezug
                                                
Bezug
Diskriminant Normierte Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:21 Di 31.01.2017
Autor: Joseph95

Zu den Fragen würde ich sagen:
1) [mm] t_\alpha(X^k) [/mm] = [mm] X^k [/mm] + [mm] \alpha [/mm]
2) [mm] t_a(f) [/mm] = [mm] X^n [/mm] + [mm] a_{n-1}X^{n-1} [/mm] + [mm] a_{n-2}X^{n-2} [/mm] + ... + + [mm] a_{1}X^{1} [/mm] + [mm] a_0 [/mm] + [mm] \alpha [/mm]

3) Sei [mm] x_n_1 [/mm] beispielweise eine Nullstelle für f, dann würde man für [mm] t_\alpha(f) [/mm] anstatt 0 [mm] \alpha [/mm] raus bekommen. In [mm] t_\alpha(f) [/mm] müsste das Polynom ohne [mm] \alpha [/mm] für Nullstellen - [mm] \alpha [/mm] raus kommen, damit sich beides aufhebt und 0 als Ergebnis kommt. Ich habe mich an der Aufgabe fest gebissen, weiß aber nicht wie ich damit weiter komme...

Bitte um Hilfe :((


Joseph95

Bezug
                                                        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Di 31.01.2017
Autor: hippias


> Zu den Fragen würde ich sagen:
>  1) [mm]t_\alpha(X^k)[/mm] = [mm]X^k[/mm] + [mm]\alpha[/mm]

Das ist nicht richtig: [mm] $t_{\alpha}$ [/mm] ist ein Ringhomomorphismus!

>  2) [mm]t_a(f)[/mm] = [mm]X^n[/mm] + [mm]a_{n-1}X^{n-1}[/mm] + [mm]a_{n-2}X^{n-2}[/mm] + ... +
> + [mm]a_{1}X^{1}[/mm] + [mm]a_0[/mm] + [mm]\alpha[/mm]

S.o.

>  
> 3) Sei [mm]x_n_1[/mm] beispielweise eine Nullstelle für f, dann
> würde man für [mm]t_\alpha(f)[/mm] anstatt 0 [mm]\alpha[/mm] raus bekommen.
> In [mm]t_\alpha(f)[/mm] müsste das Polynom ohne [mm]\alpha[/mm] für
> Nullstellen - [mm]\alpha[/mm] raus kommen, damit sich beides aufhebt
> und 0 als Ergebnis kommt. Ich habe mich an der Aufgabe fest
> gebissen, weiß aber nicht wie ich damit weiter komme...

Das ist richtig vermutet. Gehe damit in die Formel für die Diskriminante.

>  
> Bitte um Hilfe :((
>  
>
> Joseph95


Bezug
                                                                
Bezug
Diskriminant Normierte Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:01 Di 31.01.2017
Autor: Joseph95

Stimmt... Wir setzen ja für X nun X + [mm] \alpha [/mm] ein, weshalb wir für [mm] t_\alpha(X^k) [/mm] = (X + [mm] \alpha)^k [/mm] bekommen, oder?

für das Polynom von f in [mm] t_\alpha(f) [/mm] würden wir dann erhalten:
$ [mm] t_a(f) [/mm] $ = $ [mm] (X+\alpha)^n [/mm] $ + $ [mm] a_{n-1}(X+\alpha)^{n-1} [/mm] $ + $ [mm] a_{n-2}(X+\alpha)^{n-2} [/mm] $ + ... + + $ [mm] a_{1}(X+\alpha)^{1} [/mm] $ + $ [mm] a_0 [/mm] $

Ist das denn so richtig?

Setze ich nun das in:
[mm] disc(t_\alpha(f)) [/mm] ein, dann erhalte ich ja [mm] (-1)^\frac{n*(n-1)}{2} [/mm] res(f, f')

Wieso ist dies nun gleich der disc(f)??

Bezug
                                                                        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Di 31.01.2017
Autor: hippias


> Stimmt... Wir setzen ja für X nun X + [mm]\alpha[/mm] ein, weshalb
> wir für [mm]t_\alpha(X^k)[/mm] = (X + [mm]\alpha)^k[/mm] bekommen, oder?
>  
> für das Polynom von f in [mm]t_\alpha(f)[/mm] würden wir dann
> erhalten:
>  [mm]t_a(f)[/mm] = [mm](X+\alpha)^n[/mm] + [mm]a_{n-1}(X+\alpha)^{n-1}[/mm] +
> [mm]a_{n-2}(X+\alpha)^{n-2}[/mm] + ... + + [mm]a_{1}(X+\alpha)^{1}[/mm] +
> [mm]a_0[/mm]
>  
> Ist das denn so richtig?

Ja.

>  
> Setze ich nun das in:
>  [mm]disc(t_\alpha(f))[/mm] ein, dann erhalte ich ja
> [mm](-1)^\frac{n*(n-1)}{2}[/mm] res(f, f')
>  
> Wieso ist dies nun gleich der disc(f)??

Das ist Deine Hausaufgabe!! Aber vielleicht gehst Du nocheinmal Deine eigenen Texte in diesem Faden durch...

Bezug
                                                                        
Bezug
Diskriminant Normierte Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:43 Di 31.01.2017
Autor: fred97


> Stimmt... Wir setzen ja für X nun X + [mm]\alpha[/mm] ein, weshalb
> wir für [mm]t_\alpha(X^k)[/mm] = (X + [mm]\alpha)^k[/mm] bekommen, oder?
>  
> für das Polynom von f in [mm]t_\alpha(f)[/mm] würden wir dann
> erhalten:
>  [mm]t_a(f)[/mm] = [mm](X+\alpha)^n[/mm] + [mm]a_{n-1}(X+\alpha)^{n-1}[/mm] +
> [mm]a_{n-2}(X+\alpha)^{n-2}[/mm] + ... + + [mm]a_{1}(X+\alpha)^{1}[/mm] +
> [mm]a_0[/mm]
>  
> Ist das denn so richtig?

Ja.


>  
> Setze ich nun das in:
>  [mm]disc(t_\alpha(f))[/mm] ein, dann erhalte ich ja
> [mm](-1)^\frac{n*(n-1)}{2}[/mm] res(f, f')
>  
> Wieso ist dies nun gleich der disc(f)??


Nimm doch die Def !.

Seien [mm] a_1,....,a_n [/mm] die Nullstellen von f. Dann sind [mm] b_1:=a_1- \alpha,...., b_n:=a_n- \alpha [/mm] die Nullstellen von [mm] t_{\alpha}(f). [/mm]

Für i<j ist

  [mm] b_i-b_j=a_i-a_j. [/mm]

Klingelts ?




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]