matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeweis Komplexe Potenzfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Beweis Komplexe Potenzfunktion
Beweis Komplexe Potenzfunktion < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Komplexe Potenzfunktion: Beweis
Status: (Frage) beantwortet Status 
Datum: 07:13 So 22.05.2016
Autor: Orkan5452

Aufgabe
Sei r>0 und [mm] \zeta= e^{(2*\pi*i)/n} [/mm] mit festem n in [mm] \pi. [/mm]
Sei f: [mm] B_{r}(0)-> \IC [/mm] holomorph, so dass gilt f(z) = [mm] f(\zeta*z) [/mm] für alle z [mm] \in B_{r}(0). [/mm]
Zeigen Sie: Es existiert eine holomorphe Funktion g: [mm] B_{r^n}(0) [/mm] -> [mm] \IC [/mm] mit f(z)= [mm] g(z^n) [/mm] für alle z [mm] \in B_{r}(0)). [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.onlinemathe.de/forum/Beweisaufgabe-zu-Potenzfunktionen-im-Komplexen


--------------------------------


Im Vorlesungsskript steht eine Aussage:  Liegt die Kreisscheibe [mm] B_{R}(z_{0}):= \{z= \in \IC : | z-z_{0}|<= R\} [/mm] in U. So gilt:

[mm] \integral_{|z-z_{0}|=R}{f(z) dz} [/mm] =0

Ich hab hier leider überhaupt keine Ahnung, ich kann mir vorstellen, dass man irgendwie die Chauchyintegrationsformel zur Anwendung bringen muss und dann den Fall [mm] B_{r}(0) [/mm] irgendwie auf den Fall  [mm] B_{r^n}(0) [/mm] erweitern muss, aber die Frage ist wie und ob das überhaupt stimmt?

Was ich mir auch denken könnte ist, dass man zeigen muss [mm] f(\zeta*z)=g(z^n) [/mm] und das für alle z? Aber wie zeigt man das für alle z, also dass das ohne Einschränkung gilt? Reicht es einfach durch Umformung zu zeigen das [mm] f(\zeta*z)=g(z^n) [/mm] gilt? Geht das mit der Chauchyintegrationsformel? bzw. wenn ja, wie wende ich diese hier richtig an?


Es wäre sehr nett, wenn ihr mir helfen könntet, weil außer wirkliches raten und auf gut Glück irgendwas zu produzieren das wahrscheinlich nicht stimmt kann ich hier nicht, bzw. ich habe keine Ahnung wie die richtige Lösung auszusehen hat und wie man diese Korrekt hinschreibt.

Ich bedanke mich schon mal in Voraus.
Mit freundlichen Grüßen

        
Bezug
Beweis Komplexe Potenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 So 22.05.2016
Autor: fred97


> Sei r>0 und [mm]\zeta= e^{(2*\pi*i)/n}[/mm] mit festem n in [mm]\pi.[/mm]
>  Sei f: [mm]B_{r}(0)-> \IC[/mm] holomorph, so dass gilt f(z) =
> [mm]f(\zeta*z)[/mm] für alle z [mm]\in B_{r}(0).[/mm]
>  Zeigen Sie: Es
> existiert eine holomorphe Funktion g: [mm]B_{r^n}(0)[/mm] -> [mm]\IC[/mm] mit
> f(z)= [mm]g(z^n)[/mm] für alle z [mm]\in B_{r}(0)).[/mm]
>  Ich habe diese
> Frage auch in folgenden Foren auf anderen Internetseiten
> gestellt:
> http://www.onlinemathe.de/forum/Beweisaufgabe-zu-Potenzfunktionen-im-Komplexen
>  
>
> --------------------------------
>  
>
> Im Vorlesungsskript steht eine Aussage:  Liegt die
> Kreisscheibe [mm]B_{R}(z_{0}):= \{z= \in \IC : | z-z_{0}|<= R\}[/mm]
> in U. So gilt:
>  
> [mm]\integral_{|z-z_{0}|=R}{f(z) dz}[/mm] =0
>  
> Ich hab hier leider überhaupt keine Ahnung, ich kann mir
> vorstellen, dass man irgendwie die
> Chauchyintegrationsformel zur Anwendung bringen muss und
> dann den Fall [mm]B_{r}(0)[/mm] irgendwie auf den Fall  [mm]B_{r^n}(0)[/mm]
> erweitern muss, aber die Frage ist wie und ob das
> überhaupt stimmt?
>  
> Was ich mir auch denken könnte ist, dass man zeigen muss
> [mm]f(\zeta*z)=g(z^n)[/mm] und das für alle z? Aber wie zeigt man
> das für alle z, also dass das ohne Einschränkung gilt?
> Reicht es einfach durch Umformung zu zeigen das
> [mm]f(\zeta*z)=g(z^n)[/mm] gilt? Geht das mit der
> Chauchyintegrationsformel? bzw. wenn ja, wie wende ich
> diese hier richtig an?
>  
>
> Es wäre sehr nett, wenn ihr mir helfen könntet, weil
> außer wirkliches raten und auf gut Glück irgendwas zu
> produzieren das wahrscheinlich nicht stimmt kann ich hier
> nicht, bzw. ich habe keine Ahnung wie die richtige Lösung
> auszusehen hat und wie man diese Korrekt hinschreibt.
>  
> Ich bedanke mich schon mal in Voraus.


Aus $f(z) = [mm] f(\zeta\cdot{}z) [/mm] $ folgt [mm] $f'(z)=\zeta f'(\zeta\cdot{}z)$. [/mm]

Ist n [mm] \ne [/mm] 1, s0 folgt z.B. f'(0)=0.

Nun überlege Dir, dass gilt  [mm] f^{(k)}(0)=0 [/mm] , wenn k kein Vielfaches von n ist.

Damit lautet die Potenzreihenentwicklung von f für |z|<r:

  [mm] f(z)=a_0+a_nz^n+a_{2n}z^{2n}+....... [/mm]

Nun sollte Dir g ins Auge springen...

FRED

>  Mit freundlichen Grüßen


Bezug
                
Bezug
Beweis Komplexe Potenzfunktion: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:47 So 22.05.2016
Autor: Orkan5452

Aufgabe
Sei r>0 und [mm] \zeta= e^{(2*\pi*i)/n} [/mm] mit festem n in [mm] \pi. [/mm]
Sei f: [mm] B_{r}(0)-> \IC [/mm] holomorph, so dass gilt f(z) = [mm] f(\zeta*z) [/mm] für alle z [mm] \in B_{r}(0). [/mm]
Zeigen Sie: Es existiert eine holomorphe Funktion g: [mm] B_{r^n}(0) [/mm] -> [mm] \IC [/mm] mit f(z)= [mm] g(z^n) [/mm] für alle z [mm] \in B_{r}(0)). [/mm]

Ich habe folgendes Verständnissproblem:


Warum muss f'(0)=0 sein ?
Wenn f' z.b. eine Exponentialfunktion ist, dann ist [mm] f'(0)\not=0. [/mm]
Oder darf ich einfach bestimmen, dass f bzw. f' keine Exponentialfunktio ist, da ja nur als Einschränkung gegeben ist, dass f holomorph ist?

Allgemein gilt ja für diese Funktion:

[mm] f^{(n)}(z)=(\zeta)^k*f^{(n)}(\zeta*z) [/mm]

Für z=0 ergiebt sich dann:

[mm] f^{(n)}(0)=(\zeta)^k*f^{(n)}(0) [/mm]

Wenn man nicht vorraussetzt, bzw. nicht weiß , dass [mm] f^{(n)}(0)=0 [/mm] ist kann man jetzt durch [mm] f^{(n)}(0) [/mm] dividieren?

Damit ergibt sich [mm] 1=(\zeta)^k [/mm] ?

Wobei nach dieser betrachtung für (2/n)*k = 2x eine wahre Aussage gilt, da [mm] 1=(\zeta)^k [/mm] = (-1)^((2/n)*k)?
Für (2/n)*k = x wäre (-1)^((2/n)*k)=-1 für ungerade x und [mm] -1\not=1. [/mm]
Folgt hierraus, dass [mm] f^{(n)}(0)=0 [/mm] ist für den fall, dass k kein Vielfaches von n ist?

Wie kann man (daraus) folgern, dass gilt [mm] f^{(n)}(0)=0 [/mm] bzw. f'(0)=0?

Ich bedanke mich soweit und würde mich freuen, wenn man mir noch weiterhelfen könnte.

Mit freundlichen Grüßen


Bezug
                        
Bezug
Beweis Komplexe Potenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 00:12 Mo 23.05.2016
Autor: leduart

Hallo
ist dir wirklich nicht klar, dass für [mm] c\neq [/mm] 1 aus h(z)=c*h(z) folgt h(z)=0?
genau das hat doch fred mit h=f' geschrieben?
da du ja schon f^(k) richtig hingeschrieben hast für welche k ist das  dann [mm] \neq [/mm] 0
Gruß leduart

Bezug
                        
Bezug
Beweis Komplexe Potenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Mo 23.05.2016
Autor: fred97


> Sei r>0 und [mm]\zeta= e^{(2*\pi*i)/n}[/mm] mit festem n in [mm]\pi.[/mm]
>  Sei f: [mm]B_{r}(0)-> \IC[/mm] holomorph, so dass gilt f(z) =
> [mm]f(\zeta*z)[/mm] für alle z [mm]\in B_{r}(0).[/mm]
>  Zeigen Sie: Es
> existiert eine holomorphe Funktion g: [mm]B_{r^n}(0)[/mm] -> [mm]\IC[/mm] mit
> f(z)= [mm]g(z^n)[/mm] für alle z [mm]\in B_{r}(0)).[/mm]
>  Ich habe folgendes
> Verständnissproblem:
>  
>
> Warum muss f'(0)=0 sein ?
>  Wenn f' z.b. eine Exponentialfunktion ist, dann ist
> [mm]f'(0)\not=0.[/mm]
>  Oder darf ich einfach bestimmen, dass f bzw. f' keine
> Exponentialfunktio ist, da ja nur als Einschränkung
> gegeben ist, dass f holomorph ist?
>  
> Allgemein gilt ja für diese Funktion:
>  
> [mm]f^{(n)}(z)=(\zeta)^k*f^{(n)}(\zeta*z)[/mm]
>  
> Für z=0 ergiebt sich dann:
>  
> [mm]f^{(n)}(0)=(\zeta)^k*f^{(n)}(0)[/mm]
>  
> Wenn man nicht vorraussetzt, bzw. nicht weiß , dass
> [mm]f^{(n)}(0)=0[/mm] ist kann man jetzt durch [mm]f^{(n)}(0)[/mm]
> dividieren?
>  
> Damit ergibt sich [mm]1=(\zeta)^k[/mm] ?
>  
> Wobei nach dieser betrachtung für (2/n)*k = 2x eine wahre
> Aussage gilt, da [mm]1=(\zeta)^k[/mm] = (-1)^((2/n)*k)?
>  Für (2/n)*k = x wäre (-1)^((2/n)*k)=-1 für ungerade x
> und [mm]-1\not=1.[/mm]
>  Folgt hierraus, dass [mm]f^{(n)}(0)=0[/mm] ist für den fall, dass
> k kein Vielfaches von n ist?
>  
> Wie kann man (daraus) folgern, dass gilt [mm]f^{(n)}(0)=0[/mm] bzw.
> f'(0)=0?
>  
> Ich bedanke mich soweit und würde mich freuen, wenn man
> mir noch weiterhelfen könnte.
>  
> Mit freundlichen Grüßen
>  


Machen wirs mal so:

Fall 1: n=1. Dann ist [mm] \zeta=1. [/mm] Wie schaut nun das gesuchte g aus ?

Fall 2: n>1. Mache Dir klar:

    ist k [mm] \in \IN [/mm] und ist k kein Vielfaches von n, so ist

    (*) $ 0 [mm] \ne \zeta^k \ne [/mm] 1.$

Mit der Kettenregel bekommen wir;

   $ [mm] f^{(k)}(z)= \zeta^k f^{(k)}(\zeta [/mm] z)$,

also

    $ [mm] f^{(k)}(0)= \zeta^k f^{(k)}(0)$. [/mm]

Ist nun k kein Vielfaches von n, so folgt aus (*):     $ [mm] f^{(k)}(0)=0$. [/mm]

Damit lautet die Potenzreihenentwicklung von f für |z|<r:

  $ [mm] f(z)=a_0+a_nz^n+a_{2n}z^{2n}+....... [/mm] $


Wie ist nun g zu wählen ?

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]