matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis für Vektorraum A^t
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis für Vektorraum A^t
Basis für Vektorraum A^t < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis für Vektorraum A^t: Basis finden
Status: (Frage) beantwortet Status 
Datum: 22:48 Sa 13.09.2014
Autor: MeMeansMe

Aufgabe
Es sei V = {A [mm] \in M_2{\IR} [/mm] | [mm] A^t [/mm] = A} (wobei [mm] A^t [/mm] die transponierte Matrix von A ist). Gib eine Basis für V.

Hallo :)

Die Matrizen in der Menge V müssen, wenn ich es richtig verstanden habe, alle die Form [mm] \pmat{ a & b \\ b & c } [/mm] haben (wobei  a, b, c [mm] \in \IR, [/mm] werde ich im Folgenden nicht mehr erwähnen). Ich weiß jetzt allerdings nicht, welche allgemein gültige Technik ich anwenden muss, um für die o.g. Menge eine Basis zu finden. Intuitiv würde ich sagen, dass die Basis aus den Matrizen [mm] \pmat{ a & 0 \\ 0 & 0 }, \pmat{ 0 & b \\ b & 0 } [/mm] und [mm] \pmat{ 0 & 0 \\ 0 & c } [/mm] bestehen muss, weil dann gilt:

[mm] a\pmat{ 1 & 0 \\ 0 & 0 } [/mm] + [mm] b\pmat{ 0 & 1 \\ 1 & 0 } [/mm] + [mm] c\pmat{ 0 & 0 \\ 0 & 1 } [/mm] = [mm] \pmat{ a & b \\ b & c } [/mm]

Stimmt das so? Und wenn ja, muss ich dann noch mehr Schritte unternehmen? Ich fand das hier eigentlich relativ logisch, nur wie gehe ich vor, wenn das mal nicht so ist und wenn ich zu irgendeiner Menge eine Basis finden muss?

Vielen Dank für jede Hilfe :)

        
Bezug
Basis für Vektorraum A^t: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 So 14.09.2014
Autor: Marcel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

> Es sei V = {A [mm]\in M_2{\IR}[/mm] | [mm]A^t[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= A} (wobei [mm]A^t[/mm] die

> transponierte Matrix von A ist). Gib eine Basis für V.
>  Hallo :)
>  
> Die Matrizen in der Menge V müssen, wenn ich es richtig
> verstanden habe, alle die Form [mm]\pmat{ a & b \\ b & c }[/mm]
> haben (wobei  a, b, c [mm]\in \IR,[/mm] werde ich im Folgenden nicht
> mehr erwähnen).

nicht nur "erzählen", sondern auch beweisen:
Sei auch $d [mm] \in \IR\,,$ [/mm] dann gilt

    [mm] $\pmat{ a & b \\ c & d } \in [/mm] V$

    [mm] $\iff$ $\pmat{ a & b \\ c & d }=\pmat{ a & c \\ b & d }\,.$ [/mm]

Daraus folgt Deine Behauptung durch Vergleich der Einträge.

> Ich weiß jetzt allerdings nicht, welche
> allgemein gültige Technik ich anwenden muss, um für die
> o.g. Menge eine Basis zu finden. Intuitiv würde ich sagen,
> dass die Basis aus den Matrizen [mm]\pmat{ a & 0 \\ 0 & 0 }, \pmat{ 0 & b \\ b & 0 }[/mm]
> und [mm]\pmat{ 0 & 0 \\ 0 & c }[/mm]

Für feste [mm] $a,b,c\,,$ [/mm] die alle [mm] $\not=0$ [/mm] sind.

> bestehen muss, weil dann gilt:
>  
> [mm]a\pmat{ 1 & 0 \\ 0 & 0 }[/mm] + [mm]b\pmat{ 0 & 1 \\ 1 & 0 }[/mm] +
> [mm]c\pmat{ 0 & 0 \\ 0 & 1 }[/mm] = [mm]\pmat{ a & b \\ b & c }[/mm]

Dann nehmen wir hier am Besten die Familie

    [mm] $(\;\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 1 \\ 1 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }\;)$ [/mm]
  

> Stimmt das so?

Letzteres stimmt dann so. Warum? Naja:

1. Es ist (relativ) klar, dass Du/wir so ein Erzeugendensystem von [mm] $V\,$ [/mm] angegeben
hast/haben.

2. Mir ist relativ klar, dass das EZS auch minimal ist. Du solltest aber auch
jeden Skeptiker davon überzeugen können.

> Und wenn ja, muss ich dann noch mehr
> Schritte unternehmen?

Siehe oben.
Es gibt auch noch eine alternative Möglichkeit, wenn man nicht mit dem
Argument des minimalen EZS kommen will:
Du zeigst, dass die Familie

    [mm] $(\;\pmat{1 & 0\\0 & 0}, \pmat{0&1\\1&0}, \pmat{0&0\\0&1}\;)$ [/mm]

linear unabhängig ist.

Weil sie zudem ein EZS von [mm] $V\,$ [/mm] ist, ist sie eine maximale linear unabhg.
Familie in [mm] $V\,$ [/mm] und bildet damit eine Basis.

> Ich fand das hier eigentlich relativ
> logisch, nur wie gehe ich vor, wenn das mal nicht so ist
> und wenn ich zu irgendeiner Menge eine Basis finden muss?

Generell ist das schwer zu sagen. Hier kanntest Du ja durchaus auch eine
Basis von [mm] $M_2(\IR)\,,$ [/mm] und in dem besagten Unterraum (man sollte eigentlich
auch nachrechnen, dass das einer ist) konntest Du durchaus auch Basiselemente
von [mm] $V\,$ [/mm] aufnehmen. Wenn Du mal hinguckst:
[mm] $M_2(\IR)$ [/mm] hat die mögliche Basis

    [mm] $(\;\pmat{1 & 0\\0 & 0}, \pmat{0&1\\0&0}, \pmat{0&0\\1&0}, \pmat{0&0\\0&1}\;)$ [/mm]
    
Immerhin zwei Elemente [mm] $X\,$ [/mm] dieser vier Elemente konntest Du auch in eine
Basis für [mm] $V\,$ [/mm] aufnehmen (insbesondere haben die natürlich auch [mm] $X^t=X$ [/mm] erfüllt).
Dann kann man natürlich gucken: Was kann man mit

   [mm] $(\;\pmat{1 & 0\\0 & 0}, \pmat{0&0\\0&1}\;)$ [/mm]
  
in [mm] $V\,$ [/mm] erzeugen - wäre es alles, so wäre man fertig. Aber Du siehst ja,
dass das nicht ausreicht...
Deswegen würde man ein weiteres Element in [mm] $V\,$ [/mm] suchen, so dass das
zusammen mit den obigen beiden eine linear unabhängige Familie bildet.
Du hättest da, für [mm] $\IR \ni [/mm] r [mm] \not=0$ [/mm] auch irgendein

    [mm] $\pmat{0 & r\\r & 0}$ [/mm]

hernehmen können. Generell:
Such' mal nach dem Begriff des Basisergänzungssatzes, und schau' Dir den
Beweis dazu an. Im Wesentlichen ist das eine allgemeine mögliche
Vorgehensweise.

> Vielen Dank für jede Hilfe :)

Gerne.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]